Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{4}x-2x\left(x+6\right)=0
-2 hosil qilish uchun -1 va 2 ni ko'paytirish.
\frac{1}{4}x-2x^{2}-12x=0
-2x ga x+6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{47}{4}x-2x^{2}=0
-\frac{47}{4}x ni olish uchun \frac{1}{4}x va -12x ni birlashtirish.
x\left(-\frac{47}{4}-2x\right)=0
x omili.
x=0 x=-\frac{47}{8}
Tenglamani yechish uchun x=0 va -\frac{47}{4}-2x=0 ni yeching.
\frac{1}{4}x-2x\left(x+6\right)=0
-2 hosil qilish uchun -1 va 2 ni ko'paytirish.
\frac{1}{4}x-2x^{2}-12x=0
-2x ga x+6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{47}{4}x-2x^{2}=0
-\frac{47}{4}x ni olish uchun \frac{1}{4}x va -12x ni birlashtirish.
-2x^{2}-\frac{47}{4}x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{47}{4}\right)±\sqrt{\left(-\frac{47}{4}\right)^{2}}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, -\frac{47}{4} ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-\frac{47}{4}\right)±\frac{47}{4}}{2\left(-2\right)}
\left(-\frac{47}{4}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{\frac{47}{4}±\frac{47}{4}}{2\left(-2\right)}
-\frac{47}{4} ning teskarisi \frac{47}{4} ga teng.
x=\frac{\frac{47}{4}±\frac{47}{4}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{\frac{47}{2}}{-4}
x=\frac{\frac{47}{4}±\frac{47}{4}}{-4} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{47}{4} ni \frac{47}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-\frac{47}{8}
\frac{47}{2} ni -4 ga bo'lish.
x=\frac{0}{-4}
x=\frac{\frac{47}{4}±\frac{47}{4}}{-4} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{47}{4} ni \frac{47}{4} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=0
0 ni -4 ga bo'lish.
x=-\frac{47}{8} x=0
Tenglama yechildi.
\frac{1}{4}x-2x\left(x+6\right)=0
-2 hosil qilish uchun -1 va 2 ni ko'paytirish.
\frac{1}{4}x-2x^{2}-12x=0
-2x ga x+6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{47}{4}x-2x^{2}=0
-\frac{47}{4}x ni olish uchun \frac{1}{4}x va -12x ni birlashtirish.
-2x^{2}-\frac{47}{4}x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}-\frac{47}{4}x}{-2}=\frac{0}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\left(-\frac{\frac{47}{4}}{-2}\right)x=\frac{0}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{47}{8}x=\frac{0}{-2}
-\frac{47}{4} ni -2 ga bo'lish.
x^{2}+\frac{47}{8}x=0
0 ni -2 ga bo'lish.
x^{2}+\frac{47}{8}x+\left(\frac{47}{16}\right)^{2}=\left(\frac{47}{16}\right)^{2}
\frac{47}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{47}{16} olish uchun. Keyin, \frac{47}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{47}{8}x+\frac{2209}{256}=\frac{2209}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{47}{16} kvadratini chiqarish.
\left(x+\frac{47}{16}\right)^{2}=\frac{2209}{256}
x^{2}+\frac{47}{8}x+\frac{2209}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{47}{16}\right)^{2}}=\sqrt{\frac{2209}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{47}{16}=\frac{47}{16} x+\frac{47}{16}=-\frac{47}{16}
Qisqartirish.
x=0 x=-\frac{47}{8}
Tenglamaning ikkala tarafidan \frac{47}{16} ni ayirish.