x uchun yechish (complex solution)
x\in \mathrm{C}
x uchun yechish
x\in \mathrm{R}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
\left(x+1\right)^{2} hosil qilish uchun x+1 va x+1 ni ko'paytirish.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
\left(x-1\right)^{2} hosil qilish uchun x-1 va x-1 ni ko'paytirish.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x^{2}+1\right)^{2} hosil qilish uchun x^{2}+1 va x^{2}+1 ni ko'paytirish.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4} ga x^{2}+2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} ga x^{2}-2x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{2}x^{2} ni olish uchun -\frac{1}{2}x^{2} va x^{2} ni birlashtirish.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x^{2}+1\right)^{2} kengaytirilishi uchun ishlating.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
\frac{1}{4} ga x^{4}+2x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Ikkala tarafdan \frac{1}{4}x^{4} ni ayirish.
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
0 ni olish uchun \frac{1}{4}x^{4} va -\frac{1}{4}x^{4} ni birlashtirish.
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
Ikkala tarafdan \frac{1}{2}x^{2} ni ayirish.
\frac{1}{4}=\frac{1}{4}
0 ni olish uchun \frac{1}{2}x^{2} va -\frac{1}{2}x^{2} ni birlashtirish.
\text{true}
\frac{1}{4} va \frac{1}{4} ni taqqoslang.
x\in \mathrm{C}
Bu har qanday x uchun to‘g‘ri.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
\left(x+1\right)^{2} hosil qilish uchun x+1 va x+1 ni ko'paytirish.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
\left(x-1\right)^{2} hosil qilish uchun x-1 va x-1 ni ko'paytirish.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x^{2}+1\right)^{2} hosil qilish uchun x^{2}+1 va x^{2}+1 ni ko'paytirish.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4} ga x^{2}+2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} ga x^{2}-2x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{2}x^{2} ni olish uchun -\frac{1}{2}x^{2} va x^{2} ni birlashtirish.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x^{2}+1\right)^{2} kengaytirilishi uchun ishlating.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
\frac{1}{4} ga x^{4}+2x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Ikkala tarafdan \frac{1}{4}x^{4} ni ayirish.
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
0 ni olish uchun \frac{1}{4}x^{4} va -\frac{1}{4}x^{4} ni birlashtirish.
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
Ikkala tarafdan \frac{1}{2}x^{2} ni ayirish.
\frac{1}{4}=\frac{1}{4}
0 ni olish uchun \frac{1}{2}x^{2} va -\frac{1}{2}x^{2} ni birlashtirish.
\text{true}
\frac{1}{4} va \frac{1}{4} ni taqqoslang.
x\in \mathrm{R}
Bu har qanday x uchun to‘g‘ri.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}