x uchun yechish
x=20\sqrt{6}+50\approx 98,989794856
x=50-20\sqrt{6}\approx 1,010205144
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{4}x^{2}-25x+25=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times \frac{1}{4}\times 25}}{2\times \frac{1}{4}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{4} ni a, -25 ni b va 25 ni c bilan almashtiring.
x=\frac{-\left(-25\right)±\sqrt{625-4\times \frac{1}{4}\times 25}}{2\times \frac{1}{4}}
-25 kvadratini chiqarish.
x=\frac{-\left(-25\right)±\sqrt{625-25}}{2\times \frac{1}{4}}
-4 ni \frac{1}{4} marotabaga ko'paytirish.
x=\frac{-\left(-25\right)±\sqrt{600}}{2\times \frac{1}{4}}
625 ni -25 ga qo'shish.
x=\frac{-\left(-25\right)±10\sqrt{6}}{2\times \frac{1}{4}}
600 ning kvadrat ildizini chiqarish.
x=\frac{25±10\sqrt{6}}{2\times \frac{1}{4}}
-25 ning teskarisi 25 ga teng.
x=\frac{25±10\sqrt{6}}{\frac{1}{2}}
2 ni \frac{1}{4} marotabaga ko'paytirish.
x=\frac{10\sqrt{6}+25}{\frac{1}{2}}
x=\frac{25±10\sqrt{6}}{\frac{1}{2}} tenglamasini yeching, bunda ± musbat. 25 ni 10\sqrt{6} ga qo'shish.
x=20\sqrt{6}+50
25+10\sqrt{6} ni \frac{1}{2} ga bo'lish 25+10\sqrt{6} ga k'paytirish \frac{1}{2} ga qaytarish.
x=\frac{25-10\sqrt{6}}{\frac{1}{2}}
x=\frac{25±10\sqrt{6}}{\frac{1}{2}} tenglamasini yeching, bunda ± manfiy. 25 dan 10\sqrt{6} ni ayirish.
x=50-20\sqrt{6}
25-10\sqrt{6} ni \frac{1}{2} ga bo'lish 25-10\sqrt{6} ga k'paytirish \frac{1}{2} ga qaytarish.
x=20\sqrt{6}+50 x=50-20\sqrt{6}
Tenglama yechildi.
\frac{1}{4}x^{2}-25x+25=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{1}{4}x^{2}-25x+25-25=-25
Tenglamaning ikkala tarafidan 25 ni ayirish.
\frac{1}{4}x^{2}-25x=-25
O‘zidan 25 ayirilsa 0 qoladi.
\frac{\frac{1}{4}x^{2}-25x}{\frac{1}{4}}=-\frac{25}{\frac{1}{4}}
Ikkala tarafini 4 ga ko‘paytiring.
x^{2}+\left(-\frac{25}{\frac{1}{4}}\right)x=-\frac{25}{\frac{1}{4}}
\frac{1}{4} ga bo'lish \frac{1}{4} ga ko'paytirishni bekor qiladi.
x^{2}-100x=-\frac{25}{\frac{1}{4}}
-25 ni \frac{1}{4} ga bo'lish -25 ga k'paytirish \frac{1}{4} ga qaytarish.
x^{2}-100x=-100
-25 ni \frac{1}{4} ga bo'lish -25 ga k'paytirish \frac{1}{4} ga qaytarish.
x^{2}-100x+\left(-50\right)^{2}=-100+\left(-50\right)^{2}
-100 ni bo‘lish, x shartining koeffitsienti, 2 ga -50 olish uchun. Keyin, -50 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-100x+2500=-100+2500
-50 kvadratini chiqarish.
x^{2}-100x+2500=2400
-100 ni 2500 ga qo'shish.
\left(x-50\right)^{2}=2400
x^{2}-100x+2500 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-50\right)^{2}}=\sqrt{2400}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-50=20\sqrt{6} x-50=-20\sqrt{6}
Qisqartirish.
x=20\sqrt{6}+50 x=50-20\sqrt{6}
50 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}