x uchun yechish
x=2\sqrt{33}+2\approx 13,489125293
x=2-2\sqrt{33}\approx -9,489125293
Grafik
Baham ko'rish
Klipbordga nusxa olish
4^{2}+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88\times 4
Ikki tarafini 4 va teskari kasri \frac{1}{4} ga ko‘paytiring.
4^{2}+\left(8-x\right)^{2}+\left(4+x\right)^{2}=352
352 hosil qilish uchun 88 va 4 ni ko'paytirish.
16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=352
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
16+64-16x+x^{2}+\left(4+x\right)^{2}=352
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(8-x\right)^{2} kengaytirilishi uchun ishlating.
80-16x+x^{2}+\left(4+x\right)^{2}=352
80 olish uchun 16 va 64'ni qo'shing.
80-16x+x^{2}+16+8x+x^{2}=352
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(4+x\right)^{2} kengaytirilishi uchun ishlating.
96-16x+x^{2}+8x+x^{2}=352
96 olish uchun 80 va 16'ni qo'shing.
96-8x+x^{2}+x^{2}=352
-8x ni olish uchun -16x va 8x ni birlashtirish.
96-8x+2x^{2}=352
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
96-8x+2x^{2}-352=0
Ikkala tarafdan 352 ni ayirish.
-256-8x+2x^{2}=0
-256 olish uchun 96 dan 352 ni ayirish.
2x^{2}-8x-256=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-256\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -8 ni b va -256 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-256\right)}}{2\times 2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-256\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64+2048}}{2\times 2}
-8 ni -256 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{2112}}{2\times 2}
64 ni 2048 ga qo'shish.
x=\frac{-\left(-8\right)±8\sqrt{33}}{2\times 2}
2112 ning kvadrat ildizini chiqarish.
x=\frac{8±8\sqrt{33}}{2\times 2}
-8 ning teskarisi 8 ga teng.
x=\frac{8±8\sqrt{33}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{8\sqrt{33}+8}{4}
x=\frac{8±8\sqrt{33}}{4} tenglamasini yeching, bunda ± musbat. 8 ni 8\sqrt{33} ga qo'shish.
x=2\sqrt{33}+2
8+8\sqrt{33} ni 4 ga bo'lish.
x=\frac{8-8\sqrt{33}}{4}
x=\frac{8±8\sqrt{33}}{4} tenglamasini yeching, bunda ± manfiy. 8 dan 8\sqrt{33} ni ayirish.
x=2-2\sqrt{33}
8-8\sqrt{33} ni 4 ga bo'lish.
x=2\sqrt{33}+2 x=2-2\sqrt{33}
Tenglama yechildi.
4^{2}+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88\times 4
Ikki tarafini 4 va teskari kasri \frac{1}{4} ga ko‘paytiring.
4^{2}+\left(8-x\right)^{2}+\left(4+x\right)^{2}=352
352 hosil qilish uchun 88 va 4 ni ko'paytirish.
16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=352
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
16+64-16x+x^{2}+\left(4+x\right)^{2}=352
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(8-x\right)^{2} kengaytirilishi uchun ishlating.
80-16x+x^{2}+\left(4+x\right)^{2}=352
80 olish uchun 16 va 64'ni qo'shing.
80-16x+x^{2}+16+8x+x^{2}=352
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(4+x\right)^{2} kengaytirilishi uchun ishlating.
96-16x+x^{2}+8x+x^{2}=352
96 olish uchun 80 va 16'ni qo'shing.
96-8x+x^{2}+x^{2}=352
-8x ni olish uchun -16x va 8x ni birlashtirish.
96-8x+2x^{2}=352
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
-8x+2x^{2}=352-96
Ikkala tarafdan 96 ni ayirish.
-8x+2x^{2}=256
256 olish uchun 352 dan 96 ni ayirish.
2x^{2}-8x=256
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2x^{2}-8x}{2}=\frac{256}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{256}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-4x=\frac{256}{2}
-8 ni 2 ga bo'lish.
x^{2}-4x=128
256 ni 2 ga bo'lish.
x^{2}-4x+\left(-2\right)^{2}=128+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=128+4
-2 kvadratini chiqarish.
x^{2}-4x+4=132
128 ni 4 ga qo'shish.
\left(x-2\right)^{2}=132
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{132}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=2\sqrt{33} x-2=-2\sqrt{33}
Qisqartirish.
x=2\sqrt{33}+2 x=2-2\sqrt{33}
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}