x uchun yechish
x=-3
x=\frac{2}{3}\approx 0,666666667
Grafik
Baham ko'rish
Klipbordga nusxa olish
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(6-x\right)
x qiymati -2,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3\left(x-2\right)\left(x+2\right) ga, 2-x,x-2,3x^{2}-12 ning eng kichik karralisiga ko‘paytiring.
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(6-x\right)
-3 hosil qilish uchun 3 va -1 ni ko'paytirish.
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(6-x\right)
-3 ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-6-3x-3x^{2}+12=3x+6-\left(6-x\right)
-3x+6 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6-3x-3x^{2}=3x+6-\left(6-x\right)
6 olish uchun -6 va 12'ni qo'shing.
6-3x-3x^{2}=3x+6-6+x
6-x teskarisini topish uchun har birining teskarisini toping.
6-3x-3x^{2}=3x+x
0 olish uchun 6 dan 6 ni ayirish.
6-3x-3x^{2}=4x
4x ni olish uchun 3x va x ni birlashtirish.
6-3x-3x^{2}-4x=0
Ikkala tarafdan 4x ni ayirish.
6-7x-3x^{2}=0
-7x ni olish uchun -3x va -4x ni birlashtirish.
-3x^{2}-7x+6=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=-7 ab=-3\times 6=-18
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -3x^{2}+ax+bx+6 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-18 2,-9 3,-6
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -18-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-18=-17 2-9=-7 3-6=-3
Har bir juftlik yigʻindisini hisoblang.
a=2 b=-9
Yechim – -7 yigʻindisini beruvchi juftlik.
\left(-3x^{2}+2x\right)+\left(-9x+6\right)
-3x^{2}-7x+6 ni \left(-3x^{2}+2x\right)+\left(-9x+6\right) sifatida qaytadan yozish.
-x\left(3x-2\right)-3\left(3x-2\right)
Birinchi guruhda -x ni va ikkinchi guruhda -3 ni faktordan chiqaring.
\left(3x-2\right)\left(-x-3\right)
Distributiv funktsiyasidan foydalangan holda 3x-2 umumiy terminini chiqaring.
x=\frac{2}{3} x=-3
Tenglamani yechish uchun 3x-2=0 va -x-3=0 ni yeching.
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(6-x\right)
x qiymati -2,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3\left(x-2\right)\left(x+2\right) ga, 2-x,x-2,3x^{2}-12 ning eng kichik karralisiga ko‘paytiring.
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(6-x\right)
-3 hosil qilish uchun 3 va -1 ni ko'paytirish.
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(6-x\right)
-3 ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-6-3x-3x^{2}+12=3x+6-\left(6-x\right)
-3x+6 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6-3x-3x^{2}=3x+6-\left(6-x\right)
6 olish uchun -6 va 12'ni qo'shing.
6-3x-3x^{2}=3x+6-6+x
6-x teskarisini topish uchun har birining teskarisini toping.
6-3x-3x^{2}=3x+x
0 olish uchun 6 dan 6 ni ayirish.
6-3x-3x^{2}=4x
4x ni olish uchun 3x va x ni birlashtirish.
6-3x-3x^{2}-4x=0
Ikkala tarafdan 4x ni ayirish.
6-7x-3x^{2}=0
-7x ni olish uchun -3x va -4x ni birlashtirish.
-3x^{2}-7x+6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, -7 ni b va 6 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-3\right)\times 6}}{2\left(-3\right)}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49+12\times 6}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\left(-3\right)}
12 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{121}}{2\left(-3\right)}
49 ni 72 ga qo'shish.
x=\frac{-\left(-7\right)±11}{2\left(-3\right)}
121 ning kvadrat ildizini chiqarish.
x=\frac{7±11}{2\left(-3\right)}
-7 ning teskarisi 7 ga teng.
x=\frac{7±11}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{18}{-6}
x=\frac{7±11}{-6} tenglamasini yeching, bunda ± musbat. 7 ni 11 ga qo'shish.
x=-3
18 ni -6 ga bo'lish.
x=-\frac{4}{-6}
x=\frac{7±11}{-6} tenglamasini yeching, bunda ± manfiy. 7 dan 11 ni ayirish.
x=\frac{2}{3}
\frac{-4}{-6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-3 x=\frac{2}{3}
Tenglama yechildi.
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(6-x\right)
x qiymati -2,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3\left(x-2\right)\left(x+2\right) ga, 2-x,x-2,3x^{2}-12 ning eng kichik karralisiga ko‘paytiring.
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(6-x\right)
-3 hosil qilish uchun 3 va -1 ni ko'paytirish.
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(6-x\right)
-3 ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-6-3x-3x^{2}+12=3x+6-\left(6-x\right)
-3x+6 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6-3x-3x^{2}=3x+6-\left(6-x\right)
6 olish uchun -6 va 12'ni qo'shing.
6-3x-3x^{2}=3x+6-6+x
6-x teskarisini topish uchun har birining teskarisini toping.
6-3x-3x^{2}=3x+x
0 olish uchun 6 dan 6 ni ayirish.
6-3x-3x^{2}=4x
4x ni olish uchun 3x va x ni birlashtirish.
6-3x-3x^{2}-4x=0
Ikkala tarafdan 4x ni ayirish.
6-7x-3x^{2}=0
-7x ni olish uchun -3x va -4x ni birlashtirish.
-7x-3x^{2}=-6
Ikkala tarafdan 6 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-3x^{2}-7x=-6
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3x^{2}-7x}{-3}=-\frac{6}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\left(-\frac{7}{-3}\right)x=-\frac{6}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{7}{3}x=-\frac{6}{-3}
-7 ni -3 ga bo'lish.
x^{2}+\frac{7}{3}x=2
-6 ni -3 ga bo'lish.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=2+\left(\frac{7}{6}\right)^{2}
\frac{7}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{6} olish uchun. Keyin, \frac{7}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{7}{3}x+\frac{49}{36}=2+\frac{49}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{6} kvadratini chiqarish.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{121}{36}
2 ni \frac{49}{36} ga qo'shish.
\left(x+\frac{7}{6}\right)^{2}=\frac{121}{36}
x^{2}+\frac{7}{3}x+\frac{49}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{121}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{6}=\frac{11}{6} x+\frac{7}{6}=-\frac{11}{6}
Qisqartirish.
x=\frac{2}{3} x=-3
Tenglamaning ikkala tarafidan \frac{7}{6} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}