Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(5-x\right)
x qiymati -2,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3\left(x-2\right)\left(x+2\right) ga, 2-x,x-2,3x^{2}-12 ning eng kichik karralisiga ko‘paytiring.
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(5-x\right)
-3 hosil qilish uchun 3 va -1 ni ko'paytirish.
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(5-x\right)
-3 ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-6-3x-3x^{2}+12=3x+6-\left(5-x\right)
-3x+6 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6-3x-3x^{2}=3x+6-\left(5-x\right)
6 olish uchun -6 va 12'ni qo'shing.
6-3x-3x^{2}=3x+6-5+x
5-x teskarisini topish uchun har birining teskarisini toping.
6-3x-3x^{2}=3x+1+x
1 olish uchun 6 dan 5 ni ayirish.
6-3x-3x^{2}=4x+1
4x ni olish uchun 3x va x ni birlashtirish.
6-3x-3x^{2}-4x=1
Ikkala tarafdan 4x ni ayirish.
6-7x-3x^{2}=1
-7x ni olish uchun -3x va -4x ni birlashtirish.
6-7x-3x^{2}-1=0
Ikkala tarafdan 1 ni ayirish.
5-7x-3x^{2}=0
5 olish uchun 6 dan 1 ni ayirish.
-3x^{2}-7x+5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-3\right)\times 5}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, -7 ni b va 5 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-3\right)\times 5}}{2\left(-3\right)}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49+12\times 5}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{49+60}}{2\left(-3\right)}
12 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{109}}{2\left(-3\right)}
49 ni 60 ga qo'shish.
x=\frac{7±\sqrt{109}}{2\left(-3\right)}
-7 ning teskarisi 7 ga teng.
x=\frac{7±\sqrt{109}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{\sqrt{109}+7}{-6}
x=\frac{7±\sqrt{109}}{-6} tenglamasini yeching, bunda ± musbat. 7 ni \sqrt{109} ga qo'shish.
x=\frac{-\sqrt{109}-7}{6}
7+\sqrt{109} ni -6 ga bo'lish.
x=\frac{7-\sqrt{109}}{-6}
x=\frac{7±\sqrt{109}}{-6} tenglamasini yeching, bunda ± manfiy. 7 dan \sqrt{109} ni ayirish.
x=\frac{\sqrt{109}-7}{6}
7-\sqrt{109} ni -6 ga bo'lish.
x=\frac{-\sqrt{109}-7}{6} x=\frac{\sqrt{109}-7}{6}
Tenglama yechildi.
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(5-x\right)
x qiymati -2,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3\left(x-2\right)\left(x+2\right) ga, 2-x,x-2,3x^{2}-12 ning eng kichik karralisiga ko‘paytiring.
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(5-x\right)
-3 hosil qilish uchun 3 va -1 ni ko'paytirish.
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(5-x\right)
-3 ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-6-3x-3x^{2}+12=3x+6-\left(5-x\right)
-3x+6 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6-3x-3x^{2}=3x+6-\left(5-x\right)
6 olish uchun -6 va 12'ni qo'shing.
6-3x-3x^{2}=3x+6-5+x
5-x teskarisini topish uchun har birining teskarisini toping.
6-3x-3x^{2}=3x+1+x
1 olish uchun 6 dan 5 ni ayirish.
6-3x-3x^{2}=4x+1
4x ni olish uchun 3x va x ni birlashtirish.
6-3x-3x^{2}-4x=1
Ikkala tarafdan 4x ni ayirish.
6-7x-3x^{2}=1
-7x ni olish uchun -3x va -4x ni birlashtirish.
-7x-3x^{2}=1-6
Ikkala tarafdan 6 ni ayirish.
-7x-3x^{2}=-5
-5 olish uchun 1 dan 6 ni ayirish.
-3x^{2}-7x=-5
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3x^{2}-7x}{-3}=-\frac{5}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\left(-\frac{7}{-3}\right)x=-\frac{5}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{7}{3}x=-\frac{5}{-3}
-7 ni -3 ga bo'lish.
x^{2}+\frac{7}{3}x=\frac{5}{3}
-5 ni -3 ga bo'lish.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=\frac{5}{3}+\left(\frac{7}{6}\right)^{2}
\frac{7}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{6} olish uchun. Keyin, \frac{7}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{5}{3}+\frac{49}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{6} kvadratini chiqarish.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{109}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{5}{3} ni \frac{49}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{7}{6}\right)^{2}=\frac{109}{36}
x^{2}+\frac{7}{3}x+\frac{49}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{109}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{6}=\frac{\sqrt{109}}{6} x+\frac{7}{6}=-\frac{\sqrt{109}}{6}
Qisqartirish.
x=\frac{\sqrt{109}-7}{6} x=\frac{-\sqrt{109}-7}{6}
Tenglamaning ikkala tarafidan \frac{7}{6} ni ayirish.