Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{2}xx+\frac{1}{2}x\left(-1\right)=45
\frac{1}{2}x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}x^{2}+\frac{1}{2}x\left(-1\right)=45
x^{2} hosil qilish uchun x va x ni ko'paytirish.
\frac{1}{2}x^{2}-\frac{1}{2}x=45
-\frac{1}{2} hosil qilish uchun \frac{1}{2} va -1 ni ko'paytirish.
\frac{1}{2}x^{2}-\frac{1}{2}x-45=0
Ikkala tarafdan 45 ni ayirish.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{1}{2}\left(-45\right)}}{2\times \frac{1}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{2} ni a, -\frac{1}{2} ni b va -45 ni c bilan almashtiring.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times \frac{1}{2}\left(-45\right)}}{2\times \frac{1}{2}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-2\left(-45\right)}}{2\times \frac{1}{2}}
-4 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+90}}{2\times \frac{1}{2}}
-2 ni -45 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{361}{4}}}{2\times \frac{1}{2}}
\frac{1}{4} ni 90 ga qo'shish.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{19}{2}}{2\times \frac{1}{2}}
\frac{361}{4} ning kvadrat ildizini chiqarish.
x=\frac{\frac{1}{2}±\frac{19}{2}}{2\times \frac{1}{2}}
-\frac{1}{2} ning teskarisi \frac{1}{2} ga teng.
x=\frac{\frac{1}{2}±\frac{19}{2}}{1}
2 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{10}{1}
x=\frac{\frac{1}{2}±\frac{19}{2}}{1} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{19}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=10
10 ni 1 ga bo'lish.
x=-\frac{9}{1}
x=\frac{\frac{1}{2}±\frac{19}{2}}{1} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{19}{2} ni \frac{1}{2} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=-9
-9 ni 1 ga bo'lish.
x=10 x=-9
Tenglama yechildi.
\frac{1}{2}xx+\frac{1}{2}x\left(-1\right)=45
\frac{1}{2}x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}x^{2}+\frac{1}{2}x\left(-1\right)=45
x^{2} hosil qilish uchun x va x ni ko'paytirish.
\frac{1}{2}x^{2}-\frac{1}{2}x=45
-\frac{1}{2} hosil qilish uchun \frac{1}{2} va -1 ni ko'paytirish.
\frac{\frac{1}{2}x^{2}-\frac{1}{2}x}{\frac{1}{2}}=\frac{45}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
x^{2}+\left(-\frac{\frac{1}{2}}{\frac{1}{2}}\right)x=\frac{45}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}-x=\frac{45}{\frac{1}{2}}
-\frac{1}{2} ni \frac{1}{2} ga bo'lish -\frac{1}{2} ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}-x=90
45 ni \frac{1}{2} ga bo'lish 45 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=90+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=90+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=\frac{361}{4}
90 ni \frac{1}{4} ga qo'shish.
\left(x-\frac{1}{2}\right)^{2}=\frac{361}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{19}{2} x-\frac{1}{2}=-\frac{19}{2}
Qisqartirish.
x=10 x=-9
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.