x uchun yechish
x=\frac{\sqrt{3}-1}{2}\approx 0,366025404
x=\frac{-\sqrt{3}-1}{2}\approx -1,366025404
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{2}=x^{2}+x
x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x=\frac{1}{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}+x-\frac{1}{2}=0
Ikkala tarafdan \frac{1}{2} ni ayirish.
x=\frac{-1±\sqrt{1^{2}-4\left(-\frac{1}{2}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 1 ni b va -\frac{1}{2} ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\left(-\frac{1}{2}\right)}}{2}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1+2}}{2}
-4 ni -\frac{1}{2} marotabaga ko'paytirish.
x=\frac{-1±\sqrt{3}}{2}
1 ni 2 ga qo'shish.
x=\frac{\sqrt{3}-1}{2}
x=\frac{-1±\sqrt{3}}{2} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{3} ga qo'shish.
x=\frac{-\sqrt{3}-1}{2}
x=\frac{-1±\sqrt{3}}{2} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{3} ni ayirish.
x=\frac{\sqrt{3}-1}{2} x=\frac{-\sqrt{3}-1}{2}
Tenglama yechildi.
\frac{1}{2}=x^{2}+x
x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x=\frac{1}{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=\frac{3}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{2}\right)^{2}=\frac{3}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{\sqrt{3}}{2} x+\frac{1}{2}=-\frac{\sqrt{3}}{2}
Qisqartirish.
x=\frac{\sqrt{3}-1}{2} x=\frac{-\sqrt{3}-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}