Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{2}x^{2}-x=0
Ikkala tarafdan x ni ayirish.
x\left(\frac{1}{2}x-1\right)=0
x omili.
x=0 x=2
Tenglamani yechish uchun x=0 va \frac{x}{2}-1=0 ni yeching.
\frac{1}{2}x^{2}-x=0
Ikkala tarafdan x ni ayirish.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\times \frac{1}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{2} ni a, -1 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±1}{2\times \frac{1}{2}}
1 ning kvadrat ildizini chiqarish.
x=\frac{1±1}{2\times \frac{1}{2}}
-1 ning teskarisi 1 ga teng.
x=\frac{1±1}{1}
2 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{2}{1}
x=\frac{1±1}{1} tenglamasini yeching, bunda ± musbat. 1 ni 1 ga qo'shish.
x=2
2 ni 1 ga bo'lish.
x=\frac{0}{1}
x=\frac{1±1}{1} tenglamasini yeching, bunda ± manfiy. 1 dan 1 ni ayirish.
x=0
0 ni 1 ga bo'lish.
x=2 x=0
Tenglama yechildi.
\frac{1}{2}x^{2}-x=0
Ikkala tarafdan x ni ayirish.
\frac{\frac{1}{2}x^{2}-x}{\frac{1}{2}}=\frac{0}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
x^{2}+\left(-\frac{1}{\frac{1}{2}}\right)x=\frac{0}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}-2x=\frac{0}{\frac{1}{2}}
-1 ni \frac{1}{2} ga bo'lish -1 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}-2x=0
0 ni \frac{1}{2} ga bo'lish 0 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}-2x+1=1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
\left(x-1\right)^{2}=1
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=1 x-1=-1
Qisqartirish.
x=2 x=0
1 ni tenglamaning ikkala tarafiga qo'shish.