k uchun yechish
k=2
k=-\frac{2}{3}\approx -0,666666667
Baham ko'rish
Klipbordga nusxa olish
1\left(1-\frac{k}{2}\right)\left(2-k\right)=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
\left(1-\frac{k}{2}\right)\left(2-k\right)=2\left(k+2\right)\left(1-\frac{k}{2}\right)
1 ga 1-\frac{k}{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2-k+2\left(-\frac{k}{2}\right)-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
1-\frac{k}{2} ifodaning har bir elementini 2-k ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
2-k+\frac{-2k}{2}-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
2\left(-\frac{k}{2}\right) ni yagona kasrga aylantiring.
2-k-k-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
2 va 2 ni qisqartiring.
2-2k-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
-2k ni olish uchun -k va -k ni birlashtirish.
2-2k+\frac{k}{2}k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
1 hosil qilish uchun -1 va -1 ni ko'paytirish.
2-2k+\frac{kk}{2}=2\left(k+2\right)\left(1-\frac{k}{2}\right)
\frac{k}{2}k ni yagona kasrga aylantiring.
2-2k+\frac{k^{2}}{2}=2\left(k+2\right)\left(1-\frac{k}{2}\right)
k^{2} hosil qilish uchun k va k ni ko'paytirish.
2-2k+\frac{k^{2}}{2}=\left(2k+4\right)\left(1-\frac{k}{2}\right)
2 ga k+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2-2k+\frac{k^{2}}{2}=2k+2k\left(-\frac{k}{2}\right)+4+4\left(-\frac{k}{2}\right)
2k+4 ifodaning har bir elementini 1-\frac{k}{2} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
2-2k+\frac{k^{2}}{2}=2k+\frac{-2k}{2}k+4+4\left(-\frac{k}{2}\right)
2\left(-\frac{k}{2}\right) ni yagona kasrga aylantiring.
2-2k+\frac{k^{2}}{2}=2k-kk+4+4\left(-\frac{k}{2}\right)
2 va 2 ni qisqartiring.
2-2k+\frac{k^{2}}{2}=2k-kk+4-2k
4 va 2 ichida eng katta umumiy 2 faktorini bekor qiling.
2-2k+\frac{k^{2}}{2}=-kk+4
0 ni olish uchun 2k va -2k ni birlashtirish.
2-2k+\frac{k^{2}}{2}=-k^{2}+4
k^{2} hosil qilish uchun k va k ni ko'paytirish.
2-2k+\frac{k^{2}}{2}+k^{2}=4
k^{2} ni ikki tarafga qo’shing.
2-2k+\frac{3}{2}k^{2}=4
\frac{3}{2}k^{2} ni olish uchun \frac{k^{2}}{2} va k^{2} ni birlashtirish.
2-2k+\frac{3}{2}k^{2}-4=0
Ikkala tarafdan 4 ni ayirish.
-2-2k+\frac{3}{2}k^{2}=0
-2 olish uchun 2 dan 4 ni ayirish.
\frac{3}{2}k^{2}-2k-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
k=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{3}{2}\left(-2\right)}}{2\times \frac{3}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{3}{2} ni a, -2 ni b va -2 ni c bilan almashtiring.
k=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{3}{2}\left(-2\right)}}{2\times \frac{3}{2}}
-2 kvadratini chiqarish.
k=\frac{-\left(-2\right)±\sqrt{4-6\left(-2\right)}}{2\times \frac{3}{2}}
-4 ni \frac{3}{2} marotabaga ko'paytirish.
k=\frac{-\left(-2\right)±\sqrt{4+12}}{2\times \frac{3}{2}}
-6 ni -2 marotabaga ko'paytirish.
k=\frac{-\left(-2\right)±\sqrt{16}}{2\times \frac{3}{2}}
4 ni 12 ga qo'shish.
k=\frac{-\left(-2\right)±4}{2\times \frac{3}{2}}
16 ning kvadrat ildizini chiqarish.
k=\frac{2±4}{2\times \frac{3}{2}}
-2 ning teskarisi 2 ga teng.
k=\frac{2±4}{3}
2 ni \frac{3}{2} marotabaga ko'paytirish.
k=\frac{6}{3}
k=\frac{2±4}{3} tenglamasini yeching, bunda ± musbat. 2 ni 4 ga qo'shish.
k=2
6 ni 3 ga bo'lish.
k=-\frac{2}{3}
k=\frac{2±4}{3} tenglamasini yeching, bunda ± manfiy. 2 dan 4 ni ayirish.
k=2 k=-\frac{2}{3}
Tenglama yechildi.
1\left(1-\frac{k}{2}\right)\left(2-k\right)=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
\left(1-\frac{k}{2}\right)\left(2-k\right)=2\left(k+2\right)\left(1-\frac{k}{2}\right)
1 ga 1-\frac{k}{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2-k+2\left(-\frac{k}{2}\right)-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
1-\frac{k}{2} ifodaning har bir elementini 2-k ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
2-k+\frac{-2k}{2}-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
2\left(-\frac{k}{2}\right) ni yagona kasrga aylantiring.
2-k-k-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
2 va 2 ni qisqartiring.
2-2k-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
-2k ni olish uchun -k va -k ni birlashtirish.
2-2k+\frac{k}{2}k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
1 hosil qilish uchun -1 va -1 ni ko'paytirish.
2-2k+\frac{kk}{2}=2\left(k+2\right)\left(1-\frac{k}{2}\right)
\frac{k}{2}k ni yagona kasrga aylantiring.
2-2k+\frac{k^{2}}{2}=2\left(k+2\right)\left(1-\frac{k}{2}\right)
k^{2} hosil qilish uchun k va k ni ko'paytirish.
2-2k+\frac{k^{2}}{2}=\left(2k+4\right)\left(1-\frac{k}{2}\right)
2 ga k+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2-2k+\frac{k^{2}}{2}=2k+2k\left(-\frac{k}{2}\right)+4+4\left(-\frac{k}{2}\right)
2k+4 ifodaning har bir elementini 1-\frac{k}{2} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
2-2k+\frac{k^{2}}{2}=2k+\frac{-2k}{2}k+4+4\left(-\frac{k}{2}\right)
2\left(-\frac{k}{2}\right) ni yagona kasrga aylantiring.
2-2k+\frac{k^{2}}{2}=2k-kk+4+4\left(-\frac{k}{2}\right)
2 va 2 ni qisqartiring.
2-2k+\frac{k^{2}}{2}=2k-kk+4-2k
4 va 2 ichida eng katta umumiy 2 faktorini bekor qiling.
2-2k+\frac{k^{2}}{2}=-kk+4
0 ni olish uchun 2k va -2k ni birlashtirish.
2-2k+\frac{k^{2}}{2}=-k^{2}+4
k^{2} hosil qilish uchun k va k ni ko'paytirish.
2-2k+\frac{k^{2}}{2}+k^{2}=4
k^{2} ni ikki tarafga qo’shing.
2-2k+\frac{3}{2}k^{2}=4
\frac{3}{2}k^{2} ni olish uchun \frac{k^{2}}{2} va k^{2} ni birlashtirish.
-2k+\frac{3}{2}k^{2}=4-2
Ikkala tarafdan 2 ni ayirish.
-2k+\frac{3}{2}k^{2}=2
2 olish uchun 4 dan 2 ni ayirish.
\frac{3}{2}k^{2}-2k=2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{\frac{3}{2}k^{2}-2k}{\frac{3}{2}}=\frac{2}{\frac{3}{2}}
Tenglamaning ikki tarafini \frac{3}{2} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
k^{2}+\left(-\frac{2}{\frac{3}{2}}\right)k=\frac{2}{\frac{3}{2}}
\frac{3}{2} ga bo'lish \frac{3}{2} ga ko'paytirishni bekor qiladi.
k^{2}-\frac{4}{3}k=\frac{2}{\frac{3}{2}}
-2 ni \frac{3}{2} ga bo'lish -2 ga k'paytirish \frac{3}{2} ga qaytarish.
k^{2}-\frac{4}{3}k=\frac{4}{3}
2 ni \frac{3}{2} ga bo'lish 2 ga k'paytirish \frac{3}{2} ga qaytarish.
k^{2}-\frac{4}{3}k+\left(-\frac{2}{3}\right)^{2}=\frac{4}{3}+\left(-\frac{2}{3}\right)^{2}
-\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2}{3} olish uchun. Keyin, -\frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
k^{2}-\frac{4}{3}k+\frac{4}{9}=\frac{4}{3}+\frac{4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{3} kvadratini chiqarish.
k^{2}-\frac{4}{3}k+\frac{4}{9}=\frac{16}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{4}{3} ni \frac{4}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(k-\frac{2}{3}\right)^{2}=\frac{16}{9}
k^{2}-\frac{4}{3}k+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(k-\frac{2}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
k-\frac{2}{3}=\frac{4}{3} k-\frac{2}{3}=-\frac{4}{3}
Qisqartirish.
k=2 k=-\frac{2}{3}
\frac{2}{3} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}