Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{2}=x^{2}+x
x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x=\frac{1}{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}+x-\frac{1}{2}=0
Ikkala tarafdan \frac{1}{2} ni ayirish.
x=\frac{-1±\sqrt{1^{2}-4\left(-\frac{1}{2}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 1 ni b va -\frac{1}{2} ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\left(-\frac{1}{2}\right)}}{2}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1+2}}{2}
-4 ni -\frac{1}{2} marotabaga ko'paytirish.
x=\frac{-1±\sqrt{3}}{2}
1 ni 2 ga qo'shish.
x=\frac{\sqrt{3}-1}{2}
x=\frac{-1±\sqrt{3}}{2} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{3} ga qo'shish.
x=\frac{-\sqrt{3}-1}{2}
x=\frac{-1±\sqrt{3}}{2} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{3} ni ayirish.
x=\frac{\sqrt{3}-1}{2} x=\frac{-\sqrt{3}-1}{2}
Tenglama yechildi.
\frac{1}{2}=x^{2}+x
x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x=\frac{1}{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=\frac{3}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{2}\right)^{2}=\frac{3}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{\sqrt{3}}{2} x+\frac{1}{2}=-\frac{\sqrt{3}}{2}
Qisqartirish.
x=\frac{\sqrt{3}-1}{2} x=\frac{-\sqrt{3}-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.