t uchun yechish
t=80
t=600
Viktorina
Quadratic Equation
5xshash muammolar:
\frac{ 1 }{ 100 } = \frac{ 1 }{ t-480 } + \frac{ 1 }{ t }
Baham ko'rish
Klipbordga nusxa olish
t\left(t-480\right)=100t+100t-48000
t qiymati 0,480 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 100t\left(t-480\right) ga, 100,t-480,t ning eng kichik karralisiga ko‘paytiring.
t^{2}-480t=100t+100t-48000
t ga t-480 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
t^{2}-480t=200t-48000
200t ni olish uchun 100t va 100t ni birlashtirish.
t^{2}-480t-200t=-48000
Ikkala tarafdan 200t ni ayirish.
t^{2}-680t=-48000
-680t ni olish uchun -480t va -200t ni birlashtirish.
t^{2}-680t+48000=0
48000 ni ikki tarafga qo’shing.
t=\frac{-\left(-680\right)±\sqrt{\left(-680\right)^{2}-4\times 48000}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -680 ni b va 48000 ni c bilan almashtiring.
t=\frac{-\left(-680\right)±\sqrt{462400-4\times 48000}}{2}
-680 kvadratini chiqarish.
t=\frac{-\left(-680\right)±\sqrt{462400-192000}}{2}
-4 ni 48000 marotabaga ko'paytirish.
t=\frac{-\left(-680\right)±\sqrt{270400}}{2}
462400 ni -192000 ga qo'shish.
t=\frac{-\left(-680\right)±520}{2}
270400 ning kvadrat ildizini chiqarish.
t=\frac{680±520}{2}
-680 ning teskarisi 680 ga teng.
t=\frac{1200}{2}
t=\frac{680±520}{2} tenglamasini yeching, bunda ± musbat. 680 ni 520 ga qo'shish.
t=600
1200 ni 2 ga bo'lish.
t=\frac{160}{2}
t=\frac{680±520}{2} tenglamasini yeching, bunda ± manfiy. 680 dan 520 ni ayirish.
t=80
160 ni 2 ga bo'lish.
t=600 t=80
Tenglama yechildi.
t\left(t-480\right)=100t+100t-48000
t qiymati 0,480 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 100t\left(t-480\right) ga, 100,t-480,t ning eng kichik karralisiga ko‘paytiring.
t^{2}-480t=100t+100t-48000
t ga t-480 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
t^{2}-480t=200t-48000
200t ni olish uchun 100t va 100t ni birlashtirish.
t^{2}-480t-200t=-48000
Ikkala tarafdan 200t ni ayirish.
t^{2}-680t=-48000
-680t ni olish uchun -480t va -200t ni birlashtirish.
t^{2}-680t+\left(-340\right)^{2}=-48000+\left(-340\right)^{2}
-680 ni bo‘lish, x shartining koeffitsienti, 2 ga -340 olish uchun. Keyin, -340 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-680t+115600=-48000+115600
-340 kvadratini chiqarish.
t^{2}-680t+115600=67600
-48000 ni 115600 ga qo'shish.
\left(t-340\right)^{2}=67600
t^{2}-680t+115600 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-340\right)^{2}}=\sqrt{67600}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-340=260 t-340=-260
Qisqartirish.
t=600 t=80
340 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}