t uchun yechish
t=-400
t=120
Baham ko'rish
Klipbordga nusxa olish
t\left(t+480\right)=100t+100t+48000
t qiymati -480,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 100t\left(t+480\right) ga, 100,t+480,t ning eng kichik karralisiga ko‘paytiring.
t^{2}+480t=100t+100t+48000
t ga t+480 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
t^{2}+480t=200t+48000
200t ni olish uchun 100t va 100t ni birlashtirish.
t^{2}+480t-200t=48000
Ikkala tarafdan 200t ni ayirish.
t^{2}+280t=48000
280t ni olish uchun 480t va -200t ni birlashtirish.
t^{2}+280t-48000=0
Ikkala tarafdan 48000 ni ayirish.
t=\frac{-280±\sqrt{280^{2}-4\left(-48000\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 280 ni b va -48000 ni c bilan almashtiring.
t=\frac{-280±\sqrt{78400-4\left(-48000\right)}}{2}
280 kvadratini chiqarish.
t=\frac{-280±\sqrt{78400+192000}}{2}
-4 ni -48000 marotabaga ko'paytirish.
t=\frac{-280±\sqrt{270400}}{2}
78400 ni 192000 ga qo'shish.
t=\frac{-280±520}{2}
270400 ning kvadrat ildizini chiqarish.
t=\frac{240}{2}
t=\frac{-280±520}{2} tenglamasini yeching, bunda ± musbat. -280 ni 520 ga qo'shish.
t=120
240 ni 2 ga bo'lish.
t=-\frac{800}{2}
t=\frac{-280±520}{2} tenglamasini yeching, bunda ± manfiy. -280 dan 520 ni ayirish.
t=-400
-800 ni 2 ga bo'lish.
t=120 t=-400
Tenglama yechildi.
t\left(t+480\right)=100t+100t+48000
t qiymati -480,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 100t\left(t+480\right) ga, 100,t+480,t ning eng kichik karralisiga ko‘paytiring.
t^{2}+480t=100t+100t+48000
t ga t+480 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
t^{2}+480t=200t+48000
200t ni olish uchun 100t va 100t ni birlashtirish.
t^{2}+480t-200t=48000
Ikkala tarafdan 200t ni ayirish.
t^{2}+280t=48000
280t ni olish uchun 480t va -200t ni birlashtirish.
t^{2}+280t+140^{2}=48000+140^{2}
280 ni bo‘lish, x shartining koeffitsienti, 2 ga 140 olish uchun. Keyin, 140 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}+280t+19600=48000+19600
140 kvadratini chiqarish.
t^{2}+280t+19600=67600
48000 ni 19600 ga qo'shish.
\left(t+140\right)^{2}=67600
t^{2}+280t+19600 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t+140\right)^{2}}=\sqrt{67600}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t+140=260 t+140=-260
Qisqartirish.
t=120 t=-400
Tenglamaning ikkala tarafidan 140 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}