Baholash
\frac{1}{2018}\approx 0,00049554
Omil
\frac{1}{2 \cdot 1009} = 0,0004955401387512388
Viktorina
Arithmetic
5xshash muammolar:
\frac{ 1 }{ 1- \frac{ 1 }{ 1- \frac{ 1 }{ 1- \frac{ 1 }{ 2018 } } } }
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{1-\frac{1}{1-\frac{1}{\frac{2018}{2018}-\frac{1}{2018}}}}
1 ni \frac{2018}{2018} kasrga o‘giring.
\frac{1}{1-\frac{1}{1-\frac{1}{\frac{2018-1}{2018}}}}
\frac{2018}{2018} va \frac{1}{2018} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{1-\frac{1}{1-\frac{1}{\frac{2017}{2018}}}}
2017 olish uchun 2018 dan 1 ni ayirish.
\frac{1}{1-\frac{1}{1-1\times \frac{2018}{2017}}}
1 ni \frac{2017}{2018} ga bo'lish 1 ga k'paytirish \frac{2017}{2018} ga qaytarish.
\frac{1}{1-\frac{1}{1-\frac{2018}{2017}}}
\frac{2018}{2017} hosil qilish uchun 1 va \frac{2018}{2017} ni ko'paytirish.
\frac{1}{1-\frac{1}{\frac{2017}{2017}-\frac{2018}{2017}}}
1 ni \frac{2017}{2017} kasrga o‘giring.
\frac{1}{1-\frac{1}{\frac{2017-2018}{2017}}}
\frac{2017}{2017} va \frac{2018}{2017} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{1-\frac{1}{-\frac{1}{2017}}}
-1 olish uchun 2017 dan 2018 ni ayirish.
\frac{1}{1-1\left(-2017\right)}
1 ni -\frac{1}{2017} ga bo'lish 1 ga k'paytirish -\frac{1}{2017} ga qaytarish.
\frac{1}{1-\left(-2017\right)}
-2017 hosil qilish uchun 1 va -2017 ni ko'paytirish.
\frac{1}{1+2017}
-2017 ning teskarisi 2017 ga teng.
\frac{1}{2018}
2018 olish uchun 1 va 2017'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}