Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

1-\left(-\left(1+x\right)\left(2+x\right)\times 2\right)=\left(x-1\right)\left(x+2\right)\times 3
x qiymati -2,-1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right)\left(x+2\right) ga, x^{3}+2x^{2}-x-2,1-x,x+1 ning eng kichik karralisiga ko‘paytiring.
1-\left(-2\left(1+x\right)\left(2+x\right)\right)=\left(x-1\right)\left(x+2\right)\times 3
-2 hosil qilish uchun -1 va 2 ni ko'paytirish.
1-\left(-2-2x\right)\left(2+x\right)=\left(x-1\right)\left(x+2\right)\times 3
-2 ga 1+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1-\left(-4-6x-2x^{2}\right)=\left(x-1\right)\left(x+2\right)\times 3
-2-2x ga 2+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
1+4+6x+2x^{2}=\left(x-1\right)\left(x+2\right)\times 3
-4-6x-2x^{2} teskarisini topish uchun har birining teskarisini toping.
5+6x+2x^{2}=\left(x-1\right)\left(x+2\right)\times 3
5 olish uchun 1 va 4'ni qo'shing.
5+6x+2x^{2}=\left(x^{2}+x-2\right)\times 3
x-1 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5+6x+2x^{2}=3x^{2}+3x-6
x^{2}+x-2 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5+6x+2x^{2}-3x^{2}=3x-6
Ikkala tarafdan 3x^{2} ni ayirish.
5+6x-x^{2}=3x-6
-x^{2} ni olish uchun 2x^{2} va -3x^{2} ni birlashtirish.
5+6x-x^{2}-3x=-6
Ikkala tarafdan 3x ni ayirish.
5+3x-x^{2}=-6
3x ni olish uchun 6x va -3x ni birlashtirish.
5+3x-x^{2}+6=0
6 ni ikki tarafga qo’shing.
11+3x-x^{2}=0
11 olish uchun 5 va 6'ni qo'shing.
-x^{2}+3x+11=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 11}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 3 ni b va 11 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 11}}{2\left(-1\right)}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9+4\times 11}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+44}}{2\left(-1\right)}
4 ni 11 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{53}}{2\left(-1\right)}
9 ni 44 ga qo'shish.
x=\frac{-3±\sqrt{53}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{53}-3}{-2}
x=\frac{-3±\sqrt{53}}{-2} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{53} ga qo'shish.
x=\frac{3-\sqrt{53}}{2}
-3+\sqrt{53} ni -2 ga bo'lish.
x=\frac{-\sqrt{53}-3}{-2}
x=\frac{-3±\sqrt{53}}{-2} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{53} ni ayirish.
x=\frac{\sqrt{53}+3}{2}
-3-\sqrt{53} ni -2 ga bo'lish.
x=\frac{3-\sqrt{53}}{2} x=\frac{\sqrt{53}+3}{2}
Tenglama yechildi.
1-\left(-\left(1+x\right)\left(2+x\right)\times 2\right)=\left(x-1\right)\left(x+2\right)\times 3
x qiymati -2,-1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right)\left(x+2\right) ga, x^{3}+2x^{2}-x-2,1-x,x+1 ning eng kichik karralisiga ko‘paytiring.
1-\left(-2\left(1+x\right)\left(2+x\right)\right)=\left(x-1\right)\left(x+2\right)\times 3
-2 hosil qilish uchun -1 va 2 ni ko'paytirish.
1-\left(-2-2x\right)\left(2+x\right)=\left(x-1\right)\left(x+2\right)\times 3
-2 ga 1+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1-\left(-4-6x-2x^{2}\right)=\left(x-1\right)\left(x+2\right)\times 3
-2-2x ga 2+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
1+4+6x+2x^{2}=\left(x-1\right)\left(x+2\right)\times 3
-4-6x-2x^{2} teskarisini topish uchun har birining teskarisini toping.
5+6x+2x^{2}=\left(x-1\right)\left(x+2\right)\times 3
5 olish uchun 1 va 4'ni qo'shing.
5+6x+2x^{2}=\left(x^{2}+x-2\right)\times 3
x-1 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5+6x+2x^{2}=3x^{2}+3x-6
x^{2}+x-2 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5+6x+2x^{2}-3x^{2}=3x-6
Ikkala tarafdan 3x^{2} ni ayirish.
5+6x-x^{2}=3x-6
-x^{2} ni olish uchun 2x^{2} va -3x^{2} ni birlashtirish.
5+6x-x^{2}-3x=-6
Ikkala tarafdan 3x ni ayirish.
5+3x-x^{2}=-6
3x ni olish uchun 6x va -3x ni birlashtirish.
3x-x^{2}=-6-5
Ikkala tarafdan 5 ni ayirish.
3x-x^{2}=-11
-11 olish uchun -6 dan 5 ni ayirish.
-x^{2}+3x=-11
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+3x}{-1}=-\frac{11}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{3}{-1}x=-\frac{11}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-3x=-\frac{11}{-1}
3 ni -1 ga bo'lish.
x^{2}-3x=11
-11 ni -1 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=11+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=11+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{53}{4}
11 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=\frac{53}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{53}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{\sqrt{53}}{2} x-\frac{3}{2}=-\frac{\sqrt{53}}{2}
Qisqartirish.
x=\frac{\sqrt{53}+3}{2} x=\frac{3-\sqrt{53}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.