Baholash
-\sqrt{2}\approx -1,414213562
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{\sqrt{\frac{1}{8}}}-\frac{3}{\sqrt{\frac{1}{2}}}
3 daraja ko‘rsatkichini \frac{1}{2} ga hisoblang va \frac{1}{8} ni qiymatni oling.
\frac{1}{\frac{\sqrt{1}}{\sqrt{8}}}-\frac{3}{\sqrt{\frac{1}{2}}}
\sqrt{\frac{1}{8}} boʻlinmasining kvadrat ildizini \frac{\sqrt{1}}{\sqrt{8}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\frac{1}{\frac{1}{\sqrt{8}}}-\frac{3}{\sqrt{\frac{1}{2}}}
1 ning kvadrat ildizini hisoblab, 1 natijaga ega bo‘ling.
\frac{1}{\frac{1}{2\sqrt{2}}}-\frac{3}{\sqrt{\frac{1}{2}}}
Faktor: 8=2^{2}\times 2. \sqrt{2^{2}\times 2} koʻpaytmasining kvadrat ildizini \sqrt{2^{2}}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2^{2} ning kvadrat ildizini chiqarish.
\frac{1}{\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}}-\frac{3}{\sqrt{\frac{1}{2}}}
\frac{1}{2\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{1}{\frac{\sqrt{2}}{2\times 2}}-\frac{3}{\sqrt{\frac{1}{2}}}
\sqrt{2} kvadrati – 2.
\frac{1}{\frac{\sqrt{2}}{4}}-\frac{3}{\sqrt{\frac{1}{2}}}
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
\frac{4}{\sqrt{2}}-\frac{3}{\sqrt{\frac{1}{2}}}
1 ni \frac{\sqrt{2}}{4} ga bo'lish 1 ga k'paytirish \frac{\sqrt{2}}{4} ga qaytarish.
\frac{4\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{3}{\sqrt{\frac{1}{2}}}
\frac{4}{\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{4\sqrt{2}}{2}-\frac{3}{\sqrt{\frac{1}{2}}}
\sqrt{2} kvadrati – 2.
2\sqrt{2}-\frac{3}{\sqrt{\frac{1}{2}}}
2\sqrt{2} ni olish uchun 4\sqrt{2} ni 2 ga bo‘ling.
2\sqrt{2}-\frac{3}{\frac{\sqrt{1}}{\sqrt{2}}}
\sqrt{\frac{1}{2}} boʻlinmasining kvadrat ildizini \frac{\sqrt{1}}{\sqrt{2}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
2\sqrt{2}-\frac{3}{\frac{1}{\sqrt{2}}}
1 ning kvadrat ildizini hisoblab, 1 natijaga ega bo‘ling.
2\sqrt{2}-\frac{3}{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}
\frac{1}{\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
2\sqrt{2}-\frac{3}{\frac{\sqrt{2}}{2}}
\sqrt{2} kvadrati – 2.
2\sqrt{2}-\frac{3\times 2}{\sqrt{2}}
3 ni \frac{\sqrt{2}}{2} ga bo'lish 3 ga k'paytirish \frac{\sqrt{2}}{2} ga qaytarish.
2\sqrt{2}-\frac{3\times 2\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
\frac{3\times 2}{\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
2\sqrt{2}-\frac{3\times 2\sqrt{2}}{2}
\sqrt{2} kvadrati – 2.
2\sqrt{2}-\frac{6\sqrt{2}}{2}
6 hosil qilish uchun 3 va 2 ni ko'paytirish.
2\sqrt{2}-3\sqrt{2}
3\sqrt{2} ni olish uchun 6\sqrt{2} ni 2 ga bo‘ling.
-\sqrt{2}
-\sqrt{2} ni olish uchun 2\sqrt{2} va -3\sqrt{2} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}