x uchun yechish (complex solution)
x=-5+5\sqrt{287}i\approx -5+84,70537173i
x=-5\sqrt{287}i-5\approx -5-84,70537173i
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
\frac{ 1 }{ \frac{ 1 }{ x+10 } - \frac{ 1 }{ x } } = 720
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{\frac{x}{x\left(x+10\right)}-\frac{x+10}{x\left(x+10\right)}}=720
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x+10 va x ning eng kichik umumiy karralisi x\left(x+10\right). \frac{1}{x+10} ni \frac{x}{x} marotabaga ko'paytirish. \frac{1}{x} ni \frac{x+10}{x+10} marotabaga ko'paytirish.
\frac{1}{\frac{x-\left(x+10\right)}{x\left(x+10\right)}}=720
\frac{x}{x\left(x+10\right)} va \frac{x+10}{x\left(x+10\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{\frac{x-x-10}{x\left(x+10\right)}}=720
x-\left(x+10\right) ichidagi ko‘paytirishlarni bajaring.
\frac{1}{\frac{-10}{x\left(x+10\right)}}=720
x-x-10 kabi iboralarga o‘xshab birlashtiring.
\frac{x\left(x+10\right)}{-10}=720
x qiymati -10,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. 1 ni \frac{-10}{x\left(x+10\right)} ga bo'lish 1 ga k'paytirish \frac{-10}{x\left(x+10\right)} ga qaytarish.
\frac{x^{2}+10x}{-10}=720
x ga x+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{1}{10}x^{2}-x=720
-\frac{1}{10}x^{2}-x natijani olish uchun x^{2}+10x ning har bir ifodasini -10 ga bo‘ling.
-\frac{1}{10}x^{2}-x-720=0
Ikkala tarafdan 720 ni ayirish.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-\frac{1}{10}\right)\left(-720\right)}}{2\left(-\frac{1}{10}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{10} ni a, -1 ni b va -720 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1+\frac{2}{5}\left(-720\right)}}{2\left(-\frac{1}{10}\right)}
-4 ni -\frac{1}{10} marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1-288}}{2\left(-\frac{1}{10}\right)}
\frac{2}{5} ni -720 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{-287}}{2\left(-\frac{1}{10}\right)}
1 ni -288 ga qo'shish.
x=\frac{-\left(-1\right)±\sqrt{287}i}{2\left(-\frac{1}{10}\right)}
-287 ning kvadrat ildizini chiqarish.
x=\frac{1±\sqrt{287}i}{2\left(-\frac{1}{10}\right)}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{287}i}{-\frac{1}{5}}
2 ni -\frac{1}{10} marotabaga ko'paytirish.
x=\frac{1+\sqrt{287}i}{-\frac{1}{5}}
x=\frac{1±\sqrt{287}i}{-\frac{1}{5}} tenglamasini yeching, bunda ± musbat. 1 ni i\sqrt{287} ga qo'shish.
x=-5\sqrt{287}i-5
1+i\sqrt{287} ni -\frac{1}{5} ga bo'lish 1+i\sqrt{287} ga k'paytirish -\frac{1}{5} ga qaytarish.
x=\frac{-\sqrt{287}i+1}{-\frac{1}{5}}
x=\frac{1±\sqrt{287}i}{-\frac{1}{5}} tenglamasini yeching, bunda ± manfiy. 1 dan i\sqrt{287} ni ayirish.
x=-5+5\sqrt{287}i
1-i\sqrt{287} ni -\frac{1}{5} ga bo'lish 1-i\sqrt{287} ga k'paytirish -\frac{1}{5} ga qaytarish.
x=-5\sqrt{287}i-5 x=-5+5\sqrt{287}i
Tenglama yechildi.
\frac{1}{\frac{x}{x\left(x+10\right)}-\frac{x+10}{x\left(x+10\right)}}=720
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x+10 va x ning eng kichik umumiy karralisi x\left(x+10\right). \frac{1}{x+10} ni \frac{x}{x} marotabaga ko'paytirish. \frac{1}{x} ni \frac{x+10}{x+10} marotabaga ko'paytirish.
\frac{1}{\frac{x-\left(x+10\right)}{x\left(x+10\right)}}=720
\frac{x}{x\left(x+10\right)} va \frac{x+10}{x\left(x+10\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{\frac{x-x-10}{x\left(x+10\right)}}=720
x-\left(x+10\right) ichidagi ko‘paytirishlarni bajaring.
\frac{1}{\frac{-10}{x\left(x+10\right)}}=720
x-x-10 kabi iboralarga o‘xshab birlashtiring.
\frac{x\left(x+10\right)}{-10}=720
x qiymati -10,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. 1 ni \frac{-10}{x\left(x+10\right)} ga bo'lish 1 ga k'paytirish \frac{-10}{x\left(x+10\right)} ga qaytarish.
\frac{x^{2}+10x}{-10}=720
x ga x+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{1}{10}x^{2}-x=720
-\frac{1}{10}x^{2}-x natijani olish uchun x^{2}+10x ning har bir ifodasini -10 ga bo‘ling.
\frac{-\frac{1}{10}x^{2}-x}{-\frac{1}{10}}=\frac{720}{-\frac{1}{10}}
Ikkala tarafini -10 ga ko‘paytiring.
x^{2}+\left(-\frac{1}{-\frac{1}{10}}\right)x=\frac{720}{-\frac{1}{10}}
-\frac{1}{10} ga bo'lish -\frac{1}{10} ga ko'paytirishni bekor qiladi.
x^{2}+10x=\frac{720}{-\frac{1}{10}}
-1 ni -\frac{1}{10} ga bo'lish -1 ga k'paytirish -\frac{1}{10} ga qaytarish.
x^{2}+10x=-7200
720 ni -\frac{1}{10} ga bo'lish 720 ga k'paytirish -\frac{1}{10} ga qaytarish.
x^{2}+10x+5^{2}=-7200+5^{2}
10 ni bo‘lish, x shartining koeffitsienti, 2 ga 5 olish uchun. Keyin, 5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+10x+25=-7200+25
5 kvadratini chiqarish.
x^{2}+10x+25=-7175
-7200 ni 25 ga qo'shish.
\left(x+5\right)^{2}=-7175
x^{2}+10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+5\right)^{2}}=\sqrt{-7175}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+5=5\sqrt{287}i x+5=-5\sqrt{287}i
Qisqartirish.
x=-5+5\sqrt{287}i x=-5\sqrt{287}i-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}