Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{\frac{x}{x\left(x+10\right)}+\frac{x+10}{x\left(x+10\right)}}=720
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x+10 va x ning eng kichik umumiy karralisi x\left(x+10\right). \frac{1}{x+10} ni \frac{x}{x} marotabaga ko'paytirish. \frac{1}{x} ni \frac{x+10}{x+10} marotabaga ko'paytirish.
\frac{1}{\frac{x+x+10}{x\left(x+10\right)}}=720
\frac{x}{x\left(x+10\right)} va \frac{x+10}{x\left(x+10\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{1}{\frac{2x+10}{x\left(x+10\right)}}=720
x+x+10 kabi iboralarga o‘xshab birlashtiring.
\frac{x\left(x+10\right)}{2x+10}=720
x qiymati -10,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. 1 ni \frac{2x+10}{x\left(x+10\right)} ga bo'lish 1 ga k'paytirish \frac{2x+10}{x\left(x+10\right)} ga qaytarish.
\frac{x^{2}+10x}{2x+10}=720
x ga x+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{x^{2}+10x}{2x+10}-720=0
Ikkala tarafdan 720 ni ayirish.
\frac{x^{2}+10x}{2\left(x+5\right)}-720=0
Faktor: 2x+10.
\frac{x^{2}+10x}{2\left(x+5\right)}-\frac{720\times 2\left(x+5\right)}{2\left(x+5\right)}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 720 ni \frac{2\left(x+5\right)}{2\left(x+5\right)} marotabaga ko'paytirish.
\frac{x^{2}+10x-720\times 2\left(x+5\right)}{2\left(x+5\right)}=0
\frac{x^{2}+10x}{2\left(x+5\right)} va \frac{720\times 2\left(x+5\right)}{2\left(x+5\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x^{2}+10x-1440x-7200}{2\left(x+5\right)}=0
x^{2}+10x-720\times 2\left(x+5\right) ichidagi ko‘paytirishlarni bajaring.
\frac{x^{2}-1430x-7200}{2\left(x+5\right)}=0
x^{2}+10x-1440x-7200 kabi iboralarga o‘xshab birlashtiring.
x^{2}-1430x-7200=0
x qiymati -5 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x+5\right) ga ko'paytirish.
x=\frac{-\left(-1430\right)±\sqrt{\left(-1430\right)^{2}-4\left(-7200\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1430 ni b va -7200 ni c bilan almashtiring.
x=\frac{-\left(-1430\right)±\sqrt{2044900-4\left(-7200\right)}}{2}
-1430 kvadratini chiqarish.
x=\frac{-\left(-1430\right)±\sqrt{2044900+28800}}{2}
-4 ni -7200 marotabaga ko'paytirish.
x=\frac{-\left(-1430\right)±\sqrt{2073700}}{2}
2044900 ni 28800 ga qo'shish.
x=\frac{-\left(-1430\right)±10\sqrt{20737}}{2}
2073700 ning kvadrat ildizini chiqarish.
x=\frac{1430±10\sqrt{20737}}{2}
-1430 ning teskarisi 1430 ga teng.
x=\frac{10\sqrt{20737}+1430}{2}
x=\frac{1430±10\sqrt{20737}}{2} tenglamasini yeching, bunda ± musbat. 1430 ni 10\sqrt{20737} ga qo'shish.
x=5\sqrt{20737}+715
1430+10\sqrt{20737} ni 2 ga bo'lish.
x=\frac{1430-10\sqrt{20737}}{2}
x=\frac{1430±10\sqrt{20737}}{2} tenglamasini yeching, bunda ± manfiy. 1430 dan 10\sqrt{20737} ni ayirish.
x=715-5\sqrt{20737}
1430-10\sqrt{20737} ni 2 ga bo'lish.
x=5\sqrt{20737}+715 x=715-5\sqrt{20737}
Tenglama yechildi.
\frac{1}{\frac{x}{x\left(x+10\right)}+\frac{x+10}{x\left(x+10\right)}}=720
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x+10 va x ning eng kichik umumiy karralisi x\left(x+10\right). \frac{1}{x+10} ni \frac{x}{x} marotabaga ko'paytirish. \frac{1}{x} ni \frac{x+10}{x+10} marotabaga ko'paytirish.
\frac{1}{\frac{x+x+10}{x\left(x+10\right)}}=720
\frac{x}{x\left(x+10\right)} va \frac{x+10}{x\left(x+10\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{1}{\frac{2x+10}{x\left(x+10\right)}}=720
x+x+10 kabi iboralarga o‘xshab birlashtiring.
\frac{x\left(x+10\right)}{2x+10}=720
x qiymati -10,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. 1 ni \frac{2x+10}{x\left(x+10\right)} ga bo'lish 1 ga k'paytirish \frac{2x+10}{x\left(x+10\right)} ga qaytarish.
\frac{x^{2}+10x}{2x+10}=720
x ga x+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+10x=1440\left(x+5\right)
x qiymati -5 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x+5\right) ga ko'paytirish.
x^{2}+10x=1440x+7200
1440 ga x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+10x-1440x=7200
Ikkala tarafdan 1440x ni ayirish.
x^{2}-1430x=7200
-1430x ni olish uchun 10x va -1440x ni birlashtirish.
x^{2}-1430x+\left(-715\right)^{2}=7200+\left(-715\right)^{2}
-1430 ni bo‘lish, x shartining koeffitsienti, 2 ga -715 olish uchun. Keyin, -715 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-1430x+511225=7200+511225
-715 kvadratini chiqarish.
x^{2}-1430x+511225=518425
7200 ni 511225 ga qo'shish.
\left(x-715\right)^{2}=518425
x^{2}-1430x+511225 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-715\right)^{2}}=\sqrt{518425}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-715=5\sqrt{20737} x-715=-5\sqrt{20737}
Qisqartirish.
x=5\sqrt{20737}+715 x=715-5\sqrt{20737}
715 ni tenglamaning ikkala tarafiga qo'shish.