x uchun yechish (complex solution)
x=-5\sqrt{287}i+5\approx 5-84,70537173i
x=5+5\sqrt{287}i\approx 5+84,70537173i
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
\frac{ 1 }{ \frac{ 1 }{ x } - \frac{ 1 }{ x-10 } } = 720
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{\frac{x-10}{x\left(x-10\right)}-\frac{x}{x\left(x-10\right)}}=720
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x va x-10 ning eng kichik umumiy karralisi x\left(x-10\right). \frac{1}{x} ni \frac{x-10}{x-10} marotabaga ko'paytirish. \frac{1}{x-10} ni \frac{x}{x} marotabaga ko'paytirish.
\frac{1}{\frac{x-10-x}{x\left(x-10\right)}}=720
\frac{x-10}{x\left(x-10\right)} va \frac{x}{x\left(x-10\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{\frac{-10}{x\left(x-10\right)}}=720
x-10-x kabi iboralarga o‘xshab birlashtiring.
\frac{x\left(x-10\right)}{-10}=720
x qiymati 0,10 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. 1 ni \frac{-10}{x\left(x-10\right)} ga bo'lish 1 ga k'paytirish \frac{-10}{x\left(x-10\right)} ga qaytarish.
\frac{x^{2}-10x}{-10}=720
x ga x-10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{1}{10}x^{2}+x=720
-\frac{1}{10}x^{2}+x natijani olish uchun x^{2}-10x ning har bir ifodasini -10 ga bo‘ling.
-\frac{1}{10}x^{2}+x-720=0
Ikkala tarafdan 720 ni ayirish.
x=\frac{-1±\sqrt{1^{2}-4\left(-\frac{1}{10}\right)\left(-720\right)}}{2\left(-\frac{1}{10}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{10} ni a, 1 ni b va -720 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\left(-\frac{1}{10}\right)\left(-720\right)}}{2\left(-\frac{1}{10}\right)}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1+\frac{2}{5}\left(-720\right)}}{2\left(-\frac{1}{10}\right)}
-4 ni -\frac{1}{10} marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1-288}}{2\left(-\frac{1}{10}\right)}
\frac{2}{5} ni -720 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{-287}}{2\left(-\frac{1}{10}\right)}
1 ni -288 ga qo'shish.
x=\frac{-1±\sqrt{287}i}{2\left(-\frac{1}{10}\right)}
-287 ning kvadrat ildizini chiqarish.
x=\frac{-1±\sqrt{287}i}{-\frac{1}{5}}
2 ni -\frac{1}{10} marotabaga ko'paytirish.
x=\frac{-1+\sqrt{287}i}{-\frac{1}{5}}
x=\frac{-1±\sqrt{287}i}{-\frac{1}{5}} tenglamasini yeching, bunda ± musbat. -1 ni i\sqrt{287} ga qo'shish.
x=-5\sqrt{287}i+5
-1+i\sqrt{287} ni -\frac{1}{5} ga bo'lish -1+i\sqrt{287} ga k'paytirish -\frac{1}{5} ga qaytarish.
x=\frac{-\sqrt{287}i-1}{-\frac{1}{5}}
x=\frac{-1±\sqrt{287}i}{-\frac{1}{5}} tenglamasini yeching, bunda ± manfiy. -1 dan i\sqrt{287} ni ayirish.
x=5+5\sqrt{287}i
-1-i\sqrt{287} ni -\frac{1}{5} ga bo'lish -1-i\sqrt{287} ga k'paytirish -\frac{1}{5} ga qaytarish.
x=-5\sqrt{287}i+5 x=5+5\sqrt{287}i
Tenglama yechildi.
\frac{1}{\frac{x-10}{x\left(x-10\right)}-\frac{x}{x\left(x-10\right)}}=720
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x va x-10 ning eng kichik umumiy karralisi x\left(x-10\right). \frac{1}{x} ni \frac{x-10}{x-10} marotabaga ko'paytirish. \frac{1}{x-10} ni \frac{x}{x} marotabaga ko'paytirish.
\frac{1}{\frac{x-10-x}{x\left(x-10\right)}}=720
\frac{x-10}{x\left(x-10\right)} va \frac{x}{x\left(x-10\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{\frac{-10}{x\left(x-10\right)}}=720
x-10-x kabi iboralarga o‘xshab birlashtiring.
\frac{x\left(x-10\right)}{-10}=720
x qiymati 0,10 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. 1 ni \frac{-10}{x\left(x-10\right)} ga bo'lish 1 ga k'paytirish \frac{-10}{x\left(x-10\right)} ga qaytarish.
\frac{x^{2}-10x}{-10}=720
x ga x-10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{1}{10}x^{2}+x=720
-\frac{1}{10}x^{2}+x natijani olish uchun x^{2}-10x ning har bir ifodasini -10 ga bo‘ling.
\frac{-\frac{1}{10}x^{2}+x}{-\frac{1}{10}}=\frac{720}{-\frac{1}{10}}
Ikkala tarafini -10 ga ko‘paytiring.
x^{2}+\frac{1}{-\frac{1}{10}}x=\frac{720}{-\frac{1}{10}}
-\frac{1}{10} ga bo'lish -\frac{1}{10} ga ko'paytirishni bekor qiladi.
x^{2}-10x=\frac{720}{-\frac{1}{10}}
1 ni -\frac{1}{10} ga bo'lish 1 ga k'paytirish -\frac{1}{10} ga qaytarish.
x^{2}-10x=-7200
720 ni -\frac{1}{10} ga bo'lish 720 ga k'paytirish -\frac{1}{10} ga qaytarish.
x^{2}-10x+\left(-5\right)^{2}=-7200+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=-7200+25
-5 kvadratini chiqarish.
x^{2}-10x+25=-7175
-7200 ni 25 ga qo'shish.
\left(x-5\right)^{2}=-7175
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-7175}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=5\sqrt{287}i x-5=-5\sqrt{287}i
Qisqartirish.
x=5+5\sqrt{287}i x=-5\sqrt{287}i+5
5 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}