t uchun yechish
t=-2\sqrt{69}i+2\approx 2-16,613247726i
t=2+2\sqrt{69}i\approx 2+16,613247726i
Baham ko'rish
Klipbordga nusxa olish
-t^{2}+4t-280=0
t qiymati 0,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini t\left(t-4\right) ga ko'paytirish.
t=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-280\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 4 ni b va -280 ni c bilan almashtiring.
t=\frac{-4±\sqrt{16-4\left(-1\right)\left(-280\right)}}{2\left(-1\right)}
4 kvadratini chiqarish.
t=\frac{-4±\sqrt{16+4\left(-280\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
t=\frac{-4±\sqrt{16-1120}}{2\left(-1\right)}
4 ni -280 marotabaga ko'paytirish.
t=\frac{-4±\sqrt{-1104}}{2\left(-1\right)}
16 ni -1120 ga qo'shish.
t=\frac{-4±4\sqrt{69}i}{2\left(-1\right)}
-1104 ning kvadrat ildizini chiqarish.
t=\frac{-4±4\sqrt{69}i}{-2}
2 ni -1 marotabaga ko'paytirish.
t=\frac{-4+4\sqrt{69}i}{-2}
t=\frac{-4±4\sqrt{69}i}{-2} tenglamasini yeching, bunda ± musbat. -4 ni 4i\sqrt{69} ga qo'shish.
t=-2\sqrt{69}i+2
-4+4i\sqrt{69} ni -2 ga bo'lish.
t=\frac{-4\sqrt{69}i-4}{-2}
t=\frac{-4±4\sqrt{69}i}{-2} tenglamasini yeching, bunda ± manfiy. -4 dan 4i\sqrt{69} ni ayirish.
t=2+2\sqrt{69}i
-4-4i\sqrt{69} ni -2 ga bo'lish.
t=-2\sqrt{69}i+2 t=2+2\sqrt{69}i
Tenglama yechildi.
-t^{2}+4t-280=0
t qiymati 0,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini t\left(t-4\right) ga ko'paytirish.
-t^{2}+4t=280
280 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{-t^{2}+4t}{-1}=\frac{280}{-1}
Ikki tarafini -1 ga bo‘ling.
t^{2}+\frac{4}{-1}t=\frac{280}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
t^{2}-4t=\frac{280}{-1}
4 ni -1 ga bo'lish.
t^{2}-4t=-280
280 ni -1 ga bo'lish.
t^{2}-4t+\left(-2\right)^{2}=-280+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-4t+4=-280+4
-2 kvadratini chiqarish.
t^{2}-4t+4=-276
-280 ni 4 ga qo'shish.
\left(t-2\right)^{2}=-276
t^{2}-4t+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-2\right)^{2}}=\sqrt{-276}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-2=2\sqrt{69}i t-2=-2\sqrt{69}i
Qisqartirish.
t=2+2\sqrt{69}i t=-2\sqrt{69}i+2
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}