x uchun yechish (complex solution)
x=9+\sqrt{185}i\approx 9+13,601470509i
x=-\sqrt{185}i+9\approx 9-13,601470509i
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(14-x\right)\left(6x-24\right)=126\times 10
Ikkala tarafini 10 ga ko‘paytiring.
108x-336-6x^{2}=126\times 10
14-x ga 6x-24 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
108x-336-6x^{2}=1260
1260 hosil qilish uchun 126 va 10 ni ko'paytirish.
108x-336-6x^{2}-1260=0
Ikkala tarafdan 1260 ni ayirish.
108x-1596-6x^{2}=0
-1596 olish uchun -336 dan 1260 ni ayirish.
-6x^{2}+108x-1596=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-108±\sqrt{108^{2}-4\left(-6\right)\left(-1596\right)}}{2\left(-6\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -6 ni a, 108 ni b va -1596 ni c bilan almashtiring.
x=\frac{-108±\sqrt{11664-4\left(-6\right)\left(-1596\right)}}{2\left(-6\right)}
108 kvadratini chiqarish.
x=\frac{-108±\sqrt{11664+24\left(-1596\right)}}{2\left(-6\right)}
-4 ni -6 marotabaga ko'paytirish.
x=\frac{-108±\sqrt{11664-38304}}{2\left(-6\right)}
24 ni -1596 marotabaga ko'paytirish.
x=\frac{-108±\sqrt{-26640}}{2\left(-6\right)}
11664 ni -38304 ga qo'shish.
x=\frac{-108±12\sqrt{185}i}{2\left(-6\right)}
-26640 ning kvadrat ildizini chiqarish.
x=\frac{-108±12\sqrt{185}i}{-12}
2 ni -6 marotabaga ko'paytirish.
x=\frac{-108+12\sqrt{185}i}{-12}
x=\frac{-108±12\sqrt{185}i}{-12} tenglamasini yeching, bunda ± musbat. -108 ni 12i\sqrt{185} ga qo'shish.
x=-\sqrt{185}i+9
-108+12i\sqrt{185} ni -12 ga bo'lish.
x=\frac{-12\sqrt{185}i-108}{-12}
x=\frac{-108±12\sqrt{185}i}{-12} tenglamasini yeching, bunda ± manfiy. -108 dan 12i\sqrt{185} ni ayirish.
x=9+\sqrt{185}i
-108-12i\sqrt{185} ni -12 ga bo'lish.
x=-\sqrt{185}i+9 x=9+\sqrt{185}i
Tenglama yechildi.
\left(14-x\right)\left(6x-24\right)=126\times 10
Ikkala tarafini 10 ga ko‘paytiring.
108x-336-6x^{2}=126\times 10
14-x ga 6x-24 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
108x-336-6x^{2}=1260
1260 hosil qilish uchun 126 va 10 ni ko'paytirish.
108x-6x^{2}=1260+336
336 ni ikki tarafga qo’shing.
108x-6x^{2}=1596
1596 olish uchun 1260 va 336'ni qo'shing.
-6x^{2}+108x=1596
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-6x^{2}+108x}{-6}=\frac{1596}{-6}
Ikki tarafini -6 ga bo‘ling.
x^{2}+\frac{108}{-6}x=\frac{1596}{-6}
-6 ga bo'lish -6 ga ko'paytirishni bekor qiladi.
x^{2}-18x=\frac{1596}{-6}
108 ni -6 ga bo'lish.
x^{2}-18x=-266
1596 ni -6 ga bo'lish.
x^{2}-18x+\left(-9\right)^{2}=-266+\left(-9\right)^{2}
-18 ni bo‘lish, x shartining koeffitsienti, 2 ga -9 olish uchun. Keyin, -9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-18x+81=-266+81
-9 kvadratini chiqarish.
x^{2}-18x+81=-185
-266 ni 81 ga qo'shish.
\left(x-9\right)^{2}=-185
x^{2}-18x+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-9\right)^{2}}=\sqrt{-185}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-9=\sqrt{185}i x-9=-\sqrt{185}i
Qisqartirish.
x=9+\sqrt{185}i x=-\sqrt{185}i+9
9 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}