Omil
\frac{\left(3x-2y\right)\left(3x+2y\right)\left(9x^{2}+4y^{2}\right)}{1296}
Baholash
\frac{x^{4}}{16}-\frac{y^{4}}{81}
Baham ko'rish
Klipbordga nusxa olish
\frac{81x^{4}-16y^{4}}{1296}
\frac{1}{1296} omili.
\left(9x^{2}-4y^{2}\right)\left(9x^{2}+4y^{2}\right)
Hisoblang: 81x^{4}-16y^{4}. 81x^{4}-16y^{4} ni \left(9x^{2}\right)^{2}-\left(4y^{2}\right)^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(3x-2y\right)\left(3x+2y\right)
Hisoblang: 9x^{2}-4y^{2}. 9x^{2}-4y^{2} ni \left(3x\right)^{2}-\left(2y\right)^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{\left(3x-2y\right)\left(3x+2y\right)\left(9x^{2}+4y^{2}\right)}{1296}
Toʻliq ajratilgan ifodani qaytadan yozing.
\frac{81x^{4}}{1296}-\frac{16y^{4}}{1296}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 16 va 81 ning eng kichik umumiy karralisi 1296. \frac{x^{4}}{16} ni \frac{81}{81} marotabaga ko'paytirish. \frac{y^{4}}{81} ni \frac{16}{16} marotabaga ko'paytirish.
\frac{81x^{4}-16y^{4}}{1296}
\frac{81x^{4}}{1296} va \frac{16y^{4}}{1296} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}