x uchun yechish
x = \frac{\sqrt{160221897609} - 10397}{25000} \approx 15,595211036
x=\frac{-\sqrt{160221897609}-10397}{25000}\approx -16,426971036
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
\frac{ { x }^{ 2 } }{ 308-x } = 83176 \times { 10 }^{ -5 }
Baham ko'rish
Klipbordga nusxa olish
x^{2}=83176\times 10^{-5}\left(-x+308\right)
x qiymati 308 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini -x+308 ga ko'paytirish.
x^{2}=83176\times \frac{1}{100000}\left(-x+308\right)
-5 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000} ni qiymatni oling.
x^{2}=\frac{10397}{12500}\left(-x+308\right)
\frac{10397}{12500} hosil qilish uchun 83176 va \frac{1}{100000} ni ko'paytirish.
x^{2}=-\frac{10397}{12500}x+\frac{800569}{3125}
\frac{10397}{12500} ga -x+308 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+\frac{10397}{12500}x=\frac{800569}{3125}
\frac{10397}{12500}x ni ikki tarafga qo’shing.
x^{2}+\frac{10397}{12500}x-\frac{800569}{3125}=0
Ikkala tarafdan \frac{800569}{3125} ni ayirish.
x=\frac{-\frac{10397}{12500}±\sqrt{\left(\frac{10397}{12500}\right)^{2}-4\left(-\frac{800569}{3125}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, \frac{10397}{12500} ni b va -\frac{800569}{3125} ni c bilan almashtiring.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{108097609}{156250000}-4\left(-\frac{800569}{3125}\right)}}{2}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{10397}{12500} kvadratini chiqarish.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{108097609}{156250000}+\frac{3202276}{3125}}}{2}
-4 ni -\frac{800569}{3125} marotabaga ko'paytirish.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{160221897609}{156250000}}}{2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{108097609}{156250000} ni \frac{3202276}{3125} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2}
\frac{160221897609}{156250000} ning kvadrat ildizini chiqarish.
x=\frac{\sqrt{160221897609}-10397}{2\times 12500}
x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2} tenglamasini yeching, bunda ± musbat. -\frac{10397}{12500} ni \frac{\sqrt{160221897609}}{12500} ga qo'shish.
x=\frac{\sqrt{160221897609}-10397}{25000}
\frac{-10397+\sqrt{160221897609}}{12500} ni 2 ga bo'lish.
x=\frac{-\sqrt{160221897609}-10397}{2\times 12500}
x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2} tenglamasini yeching, bunda ± manfiy. -\frac{10397}{12500} dan \frac{\sqrt{160221897609}}{12500} ni ayirish.
x=\frac{-\sqrt{160221897609}-10397}{25000}
\frac{-10397-\sqrt{160221897609}}{12500} ni 2 ga bo'lish.
x=\frac{\sqrt{160221897609}-10397}{25000} x=\frac{-\sqrt{160221897609}-10397}{25000}
Tenglama yechildi.
x^{2}=83176\times 10^{-5}\left(-x+308\right)
x qiymati 308 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini -x+308 ga ko'paytirish.
x^{2}=83176\times \frac{1}{100000}\left(-x+308\right)
-5 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000} ni qiymatni oling.
x^{2}=\frac{10397}{12500}\left(-x+308\right)
\frac{10397}{12500} hosil qilish uchun 83176 va \frac{1}{100000} ni ko'paytirish.
x^{2}=-\frac{10397}{12500}x+\frac{800569}{3125}
\frac{10397}{12500} ga -x+308 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+\frac{10397}{12500}x=\frac{800569}{3125}
\frac{10397}{12500}x ni ikki tarafga qo’shing.
x^{2}+\frac{10397}{12500}x+\left(\frac{10397}{25000}\right)^{2}=\frac{800569}{3125}+\left(\frac{10397}{25000}\right)^{2}
\frac{10397}{12500} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{10397}{25000} olish uchun. Keyin, \frac{10397}{25000} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}=\frac{800569}{3125}+\frac{108097609}{625000000}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{10397}{25000} kvadratini chiqarish.
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}=\frac{160221897609}{625000000}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{800569}{3125} ni \frac{108097609}{625000000} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{10397}{25000}\right)^{2}=\frac{160221897609}{625000000}
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{10397}{25000}\right)^{2}}=\sqrt{\frac{160221897609}{625000000}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{10397}{25000}=\frac{\sqrt{160221897609}}{25000} x+\frac{10397}{25000}=-\frac{\sqrt{160221897609}}{25000}
Qisqartirish.
x=\frac{\sqrt{160221897609}-10397}{25000} x=\frac{-\sqrt{160221897609}-10397}{25000}
Tenglamaning ikkala tarafidan \frac{10397}{25000} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}