Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}=83176\times 10^{-5}x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
-x^{2}=83176\times \frac{1}{100000}x
-5 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000} ni qiymatni oling.
-x^{2}=\frac{10397}{12500}x
\frac{10397}{12500} hosil qilish uchun 83176 va \frac{1}{100000} ni ko'paytirish.
-x^{2}-\frac{10397}{12500}x=0
Ikkala tarafdan \frac{10397}{12500}x ni ayirish.
x\left(-x-\frac{10397}{12500}\right)=0
x omili.
x=0 x=-\frac{10397}{12500}
Tenglamani yechish uchun x=0 va -x-\frac{10397}{12500}=0 ni yeching.
x=-\frac{10397}{12500}
x qiymati 0 teng bo‘lmaydi.
-x^{2}=83176\times 10^{-5}x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
-x^{2}=83176\times \frac{1}{100000}x
-5 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000} ni qiymatni oling.
-x^{2}=\frac{10397}{12500}x
\frac{10397}{12500} hosil qilish uchun 83176 va \frac{1}{100000} ni ko'paytirish.
-x^{2}-\frac{10397}{12500}x=0
Ikkala tarafdan \frac{10397}{12500}x ni ayirish.
x=\frac{-\left(-\frac{10397}{12500}\right)±\sqrt{\left(-\frac{10397}{12500}\right)^{2}}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -\frac{10397}{12500} ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-\frac{10397}{12500}\right)±\frac{10397}{12500}}{2\left(-1\right)}
\left(-\frac{10397}{12500}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{2\left(-1\right)}
-\frac{10397}{12500} ning teskarisi \frac{10397}{12500} ga teng.
x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\frac{10397}{6250}}{-2}
x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{-2} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{10397}{12500} ni \frac{10397}{12500} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-\frac{10397}{12500}
\frac{10397}{6250} ni -2 ga bo'lish.
x=\frac{0}{-2}
x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{-2} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{10397}{12500} ni \frac{10397}{12500} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=0
0 ni -2 ga bo'lish.
x=-\frac{10397}{12500} x=0
Tenglama yechildi.
x=-\frac{10397}{12500}
x qiymati 0 teng bo‘lmaydi.
-x^{2}=83176\times 10^{-5}x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
-x^{2}=83176\times \frac{1}{100000}x
-5 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000} ni qiymatni oling.
-x^{2}=\frac{10397}{12500}x
\frac{10397}{12500} hosil qilish uchun 83176 va \frac{1}{100000} ni ko'paytirish.
-x^{2}-\frac{10397}{12500}x=0
Ikkala tarafdan \frac{10397}{12500}x ni ayirish.
\frac{-x^{2}-\frac{10397}{12500}x}{-1}=\frac{0}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{\frac{10397}{12500}}{-1}\right)x=\frac{0}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{10397}{12500}x=\frac{0}{-1}
-\frac{10397}{12500} ni -1 ga bo'lish.
x^{2}+\frac{10397}{12500}x=0
0 ni -1 ga bo'lish.
x^{2}+\frac{10397}{12500}x+\left(\frac{10397}{25000}\right)^{2}=\left(\frac{10397}{25000}\right)^{2}
\frac{10397}{12500} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{10397}{25000} olish uchun. Keyin, \frac{10397}{25000} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}=\frac{108097609}{625000000}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{10397}{25000} kvadratini chiqarish.
\left(x+\frac{10397}{25000}\right)^{2}=\frac{108097609}{625000000}
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{10397}{25000}\right)^{2}}=\sqrt{\frac{108097609}{625000000}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{10397}{25000}=\frac{10397}{25000} x+\frac{10397}{25000}=-\frac{10397}{25000}
Qisqartirish.
x=0 x=-\frac{10397}{12500}
Tenglamaning ikkala tarafidan \frac{10397}{25000} ni ayirish.
x=-\frac{10397}{12500}
x qiymati 0 teng bo‘lmaydi.