x uchun yechish
x=-\frac{9}{50000}=-0,00018
Grafik
Baham ko'rish
Klipbordga nusxa olish
-x^{2}=18\times 10^{-5}x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
-x^{2}=18\times \frac{1}{100000}x
-5 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000} ni qiymatni oling.
-x^{2}=\frac{9}{50000}x
\frac{9}{50000} hosil qilish uchun 18 va \frac{1}{100000} ni ko'paytirish.
-x^{2}-\frac{9}{50000}x=0
Ikkala tarafdan \frac{9}{50000}x ni ayirish.
x\left(-x-\frac{9}{50000}\right)=0
x omili.
x=0 x=-\frac{9}{50000}
Tenglamani yechish uchun x=0 va -x-\frac{9}{50000}=0 ni yeching.
x=-\frac{9}{50000}
x qiymati 0 teng bo‘lmaydi.
-x^{2}=18\times 10^{-5}x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
-x^{2}=18\times \frac{1}{100000}x
-5 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000} ni qiymatni oling.
-x^{2}=\frac{9}{50000}x
\frac{9}{50000} hosil qilish uchun 18 va \frac{1}{100000} ni ko'paytirish.
-x^{2}-\frac{9}{50000}x=0
Ikkala tarafdan \frac{9}{50000}x ni ayirish.
x=\frac{-\left(-\frac{9}{50000}\right)±\sqrt{\left(-\frac{9}{50000}\right)^{2}}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -\frac{9}{50000} ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-\frac{9}{50000}\right)±\frac{9}{50000}}{2\left(-1\right)}
\left(-\frac{9}{50000}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{\frac{9}{50000}±\frac{9}{50000}}{2\left(-1\right)}
-\frac{9}{50000} ning teskarisi \frac{9}{50000} ga teng.
x=\frac{\frac{9}{50000}±\frac{9}{50000}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\frac{9}{25000}}{-2}
x=\frac{\frac{9}{50000}±\frac{9}{50000}}{-2} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{50000} ni \frac{9}{50000} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-\frac{9}{50000}
\frac{9}{25000} ni -2 ga bo'lish.
x=\frac{0}{-2}
x=\frac{\frac{9}{50000}±\frac{9}{50000}}{-2} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{9}{50000} ni \frac{9}{50000} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=0
0 ni -2 ga bo'lish.
x=-\frac{9}{50000} x=0
Tenglama yechildi.
x=-\frac{9}{50000}
x qiymati 0 teng bo‘lmaydi.
-x^{2}=18\times 10^{-5}x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
-x^{2}=18\times \frac{1}{100000}x
-5 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000} ni qiymatni oling.
-x^{2}=\frac{9}{50000}x
\frac{9}{50000} hosil qilish uchun 18 va \frac{1}{100000} ni ko'paytirish.
-x^{2}-\frac{9}{50000}x=0
Ikkala tarafdan \frac{9}{50000}x ni ayirish.
\frac{-x^{2}-\frac{9}{50000}x}{-1}=\frac{0}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{\frac{9}{50000}}{-1}\right)x=\frac{0}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{9}{50000}x=\frac{0}{-1}
-\frac{9}{50000} ni -1 ga bo'lish.
x^{2}+\frac{9}{50000}x=0
0 ni -1 ga bo'lish.
x^{2}+\frac{9}{50000}x+\left(\frac{9}{100000}\right)^{2}=\left(\frac{9}{100000}\right)^{2}
\frac{9}{50000} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{100000} olish uchun. Keyin, \frac{9}{100000} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{9}{50000}x+\frac{81}{10000000000}=\frac{81}{10000000000}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{100000} kvadratini chiqarish.
\left(x+\frac{9}{100000}\right)^{2}=\frac{81}{10000000000}
x^{2}+\frac{9}{50000}x+\frac{81}{10000000000} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{9}{100000}\right)^{2}}=\sqrt{\frac{81}{10000000000}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{9}{100000}=\frac{9}{100000} x+\frac{9}{100000}=-\frac{9}{100000}
Qisqartirish.
x=0 x=-\frac{9}{50000}
Tenglamaning ikkala tarafidan \frac{9}{100000} ni ayirish.
x=-\frac{9}{50000}
x qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}