Baholash
\frac{\sqrt{2}}{2}\approx 0,707106781
Baham ko'rish
Klipbordga nusxa olish
\frac{400+\left(20\sqrt{2}\right)^{2}-400}{2\times 20\times 20\sqrt{2}}
2 daraja ko‘rsatkichini 20 ga hisoblang va 400 ni qiymatni oling.
\frac{400+20^{2}\left(\sqrt{2}\right)^{2}-400}{2\times 20\times 20\sqrt{2}}
\left(20\sqrt{2}\right)^{2} ni kengaytirish.
\frac{400+400\left(\sqrt{2}\right)^{2}-400}{2\times 20\times 20\sqrt{2}}
2 daraja ko‘rsatkichini 20 ga hisoblang va 400 ni qiymatni oling.
\frac{400+400\times 2-400}{2\times 20\times 20\sqrt{2}}
\sqrt{2} kvadrati – 2.
\frac{400+800-400}{2\times 20\times 20\sqrt{2}}
800 hosil qilish uchun 400 va 2 ni ko'paytirish.
\frac{1200-400}{2\times 20\times 20\sqrt{2}}
1200 olish uchun 400 va 800'ni qo'shing.
\frac{800}{2\times 20\times 20\sqrt{2}}
800 olish uchun 1200 dan 400 ni ayirish.
\frac{800}{40\times 20\sqrt{2}}
40 hosil qilish uchun 2 va 20 ni ko'paytirish.
\frac{800}{800\sqrt{2}}
800 hosil qilish uchun 40 va 20 ni ko'paytirish.
\frac{800\sqrt{2}}{800\left(\sqrt{2}\right)^{2}}
\frac{800}{800\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{800\sqrt{2}}{800\times 2}
\sqrt{2} kvadrati – 2.
\frac{\sqrt{2}}{2}
Surat va maxrajdagi ikkala 800 ni qisqartiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}