t uchun yechish
t=\frac{16}{35}\approx 0,457142857
Baham ko'rish
Klipbordga nusxa olish
17\left(20^{2}+\left(15t\right)^{2}-\left(12+15t\right)^{2}\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
t qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 1020t ga, 60t,-102t ning eng kichik karralisiga ko‘paytiring.
17\left(400+\left(15t\right)^{2}-\left(12+15t\right)^{2}\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
2 daraja ko‘rsatkichini 20 ga hisoblang va 400 ni qiymatni oling.
17\left(400+15^{2}t^{2}-\left(12+15t\right)^{2}\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
\left(15t\right)^{2} ni kengaytirish.
17\left(400+225t^{2}-\left(12+15t\right)^{2}\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
2 daraja ko‘rsatkichini 15 ga hisoblang va 225 ni qiymatni oling.
17\left(400+225t^{2}-\left(144+360t+225t^{2}\right)\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(12+15t\right)^{2} kengaytirilishi uchun ishlating.
17\left(400+225t^{2}-144-360t-225t^{2}\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
144+360t+225t^{2} teskarisini topish uchun har birining teskarisini toping.
17\left(256+225t^{2}-360t-225t^{2}\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
256 olish uchun 400 dan 144 ni ayirish.
17\left(256-360t\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
0 ni olish uchun 225t^{2} va -225t^{2} ni birlashtirish.
4352-6120t=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
17 ga 256-360t ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4352-6120t=-10\left(1156+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
2 daraja ko‘rsatkichini 34 ga hisoblang va 1156 ni qiymatni oling.
4352-6120t=-10\left(1156+15^{2}t^{2}-\left(30+15t\right)^{2}\right)
\left(15t\right)^{2} ni kengaytirish.
4352-6120t=-10\left(1156+225t^{2}-\left(30+15t\right)^{2}\right)
2 daraja ko‘rsatkichini 15 ga hisoblang va 225 ni qiymatni oling.
4352-6120t=-10\left(1156+225t^{2}-\left(900+900t+225t^{2}\right)\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(30+15t\right)^{2} kengaytirilishi uchun ishlating.
4352-6120t=-10\left(1156+225t^{2}-900-900t-225t^{2}\right)
900+900t+225t^{2} teskarisini topish uchun har birining teskarisini toping.
4352-6120t=-10\left(256+225t^{2}-900t-225t^{2}\right)
256 olish uchun 1156 dan 900 ni ayirish.
4352-6120t=-10\left(256-900t\right)
0 ni olish uchun 225t^{2} va -225t^{2} ni birlashtirish.
4352-6120t=-2560+9000t
-10 ga 256-900t ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4352-6120t-9000t=-2560
Ikkala tarafdan 9000t ni ayirish.
4352-15120t=-2560
-15120t ni olish uchun -6120t va -9000t ni birlashtirish.
-15120t=-2560-4352
Ikkala tarafdan 4352 ni ayirish.
-15120t=-6912
-6912 olish uchun -2560 dan 4352 ni ayirish.
t=\frac{-6912}{-15120}
Ikki tarafini -15120 ga bo‘ling.
t=\frac{16}{35}
\frac{-6912}{-15120} ulushini -432 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}