Baholash
\sqrt{3}\approx 1,732050808
Kengaytirish
\sqrt{3} = 1,732050808
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(2\sqrt{3}+1-1\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
2\sqrt{3} ni olish uchun \sqrt{3} va \sqrt{3} ni birlashtirish.
\frac{\left(2\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
0 olish uchun 1 dan 1 ni ayirish.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
\left(2\sqrt{3}\right)^{2} ni kengaytirish.
\frac{4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{4\times 3}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
\sqrt{3} kvadrati – 3.
\frac{12}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
12 hosil qilish uchun 4 va 3 ni ko'paytirish.
\frac{12}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{3}+1\right)^{2} kengaytirilishi uchun ishlating.
\frac{12}{3+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
\sqrt{3} kvadrati – 3.
\frac{12}{4+2\sqrt{3}-\left(\sqrt{3}-1\right)^{2}}
4 olish uchun 3 va 1'ni qo'shing.
\frac{12}{4+2\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{3}-1\right)^{2} kengaytirilishi uchun ishlating.
\frac{12}{4+2\sqrt{3}-\left(3-2\sqrt{3}+1\right)}
\sqrt{3} kvadrati – 3.
\frac{12}{4+2\sqrt{3}-\left(4-2\sqrt{3}\right)}
4 olish uchun 3 va 1'ni qo'shing.
\frac{12}{4+2\sqrt{3}-4+2\sqrt{3}}
4-2\sqrt{3} teskarisini topish uchun har birining teskarisini toping.
\frac{12}{2\sqrt{3}+2\sqrt{3}}
0 olish uchun 4 dan 4 ni ayirish.
\frac{12}{4\sqrt{3}}
4\sqrt{3} ni olish uchun 2\sqrt{3} va 2\sqrt{3} ni birlashtirish.
\frac{12\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
\frac{12}{4\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{12\sqrt{3}}{4\times 3}
\sqrt{3} kvadrati – 3.
\sqrt{3}
Surat va maxrajdagi ikkala 3\times 4 ni qisqartiring.
\frac{\left(2\sqrt{3}+1-1\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
2\sqrt{3} ni olish uchun \sqrt{3} va \sqrt{3} ni birlashtirish.
\frac{\left(2\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
0 olish uchun 1 dan 1 ni ayirish.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
\left(2\sqrt{3}\right)^{2} ni kengaytirish.
\frac{4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{4\times 3}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
\sqrt{3} kvadrati – 3.
\frac{12}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
12 hosil qilish uchun 4 va 3 ni ko'paytirish.
\frac{12}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{3}+1\right)^{2} kengaytirilishi uchun ishlating.
\frac{12}{3+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
\sqrt{3} kvadrati – 3.
\frac{12}{4+2\sqrt{3}-\left(\sqrt{3}-1\right)^{2}}
4 olish uchun 3 va 1'ni qo'shing.
\frac{12}{4+2\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{3}-1\right)^{2} kengaytirilishi uchun ishlating.
\frac{12}{4+2\sqrt{3}-\left(3-2\sqrt{3}+1\right)}
\sqrt{3} kvadrati – 3.
\frac{12}{4+2\sqrt{3}-\left(4-2\sqrt{3}\right)}
4 olish uchun 3 va 1'ni qo'shing.
\frac{12}{4+2\sqrt{3}-4+2\sqrt{3}}
4-2\sqrt{3} teskarisini topish uchun har birining teskarisini toping.
\frac{12}{2\sqrt{3}+2\sqrt{3}}
0 olish uchun 4 dan 4 ni ayirish.
\frac{12}{4\sqrt{3}}
4\sqrt{3} ni olish uchun 2\sqrt{3} va 2\sqrt{3} ni birlashtirish.
\frac{12\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
\frac{12}{4\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{12\sqrt{3}}{4\times 3}
\sqrt{3} kvadrati – 3.
\sqrt{3}
Surat va maxrajdagi ikkala 3\times 4 ni qisqartiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}