Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image

Baham ko'rish

\frac{2+\left(\frac{\sqrt{6}+\sqrt{2}}{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
\sqrt{2} kvadrati – 2.
\frac{2+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
\frac{\sqrt{6}+\sqrt{2}}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\frac{2\times 2^{2}}{2^{2}}+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2 ni \frac{2^{2}}{2^{2}} marotabaga ko'paytirish.
\frac{\frac{2\times 2^{2}+\left(\sqrt{6}+\sqrt{2}\right)^{2}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
\frac{2\times 2^{2}}{2^{2}} va \frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{2^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{8+\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
2\times 2^{2}+\left(\sqrt{6}+\sqrt{2}\right)^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{16+4\sqrt{3}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
8+\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2} hisob-kitobini qiling.
\frac{\frac{16+4\sqrt{3}}{2^{2}}-3}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
\sqrt{3} kvadrati – 3.
\frac{\frac{16+4\sqrt{3}}{2^{2}}-\frac{3\times 2^{2}}{2^{2}}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3 ni \frac{2^{2}}{2^{2}} marotabaga ko'paytirish.
\frac{\frac{16+4\sqrt{3}-3\times 2^{2}}{2^{2}}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
\frac{16+4\sqrt{3}}{2^{2}} va \frac{3\times 2^{2}}{2^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{16+4\sqrt{3}-12}{2^{2}}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
16+4\sqrt{3}-3\times 2^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{4+4\sqrt{3}}{2^{2}}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
16+4\sqrt{3}-12 hisob-kitobini qiling.
\frac{\frac{4+4\sqrt{3}}{2^{2}}}{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2}}
2 va 2 ni qisqartiring.
\frac{\frac{4+4\sqrt{3}}{2^{2}}\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{2}\right)^{2}}
\frac{\frac{4+4\sqrt{3}}{2^{2}}}{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\frac{4+4\sqrt{3}}{2^{2}}\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
\sqrt{2} kvadrati – 2.
\frac{\frac{4+4\sqrt{3}}{4}\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{\left(1+\sqrt{3}\right)\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
1+\sqrt{3} natijani olish uchun 4+4\sqrt{3} ning har bir ifodasini 4 ga bo‘ling.
\frac{\sqrt{2}+\sqrt{3}\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
1+\sqrt{3} ga \sqrt{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\sqrt{2}+\sqrt{6}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
\sqrt{3} va \sqrt{2} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{\sqrt{2}+\sqrt{6}}{2\sqrt{6}+2\sqrt{2}}
\sqrt{6}+\sqrt{2} ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{\left(2\sqrt{6}+2\sqrt{2}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}
\frac{\sqrt{2}+\sqrt{6}}{2\sqrt{6}+2\sqrt{2}} maxrajini 2\sqrt{6}-2\sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{\left(2\sqrt{6}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Hisoblang: \left(2\sqrt{6}+2\sqrt{2}\right)\left(2\sqrt{6}-2\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{2^{2}\left(\sqrt{6}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
\left(2\sqrt{6}\right)^{2} ni kengaytirish.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{4\left(\sqrt{6}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{4\times 6-\left(2\sqrt{2}\right)^{2}}
\sqrt{6} kvadrati – 6.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-\left(2\sqrt{2}\right)^{2}}
24 hosil qilish uchun 4 va 6 ni ko'paytirish.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-2^{2}\left(\sqrt{2}\right)^{2}}
\left(2\sqrt{2}\right)^{2} ni kengaytirish.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-4\left(\sqrt{2}\right)^{2}}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-4\times 2}
\sqrt{2} kvadrati – 2.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-8}
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{16}
16 olish uchun 24 dan 8 ni ayirish.
\frac{-2\left(\sqrt{2}\right)^{2}+2\left(\sqrt{6}\right)^{2}}{16}
\sqrt{2}+\sqrt{6} ga 2\sqrt{6}-2\sqrt{2} ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{-2\times 2+2\left(\sqrt{6}\right)^{2}}{16}
\sqrt{2} kvadrati – 2.
\frac{-4+2\left(\sqrt{6}\right)^{2}}{16}
-4 hosil qilish uchun -2 va 2 ni ko'paytirish.
\frac{-4+2\times 6}{16}
\sqrt{6} kvadrati – 6.
\frac{-4+12}{16}
12 hosil qilish uchun 2 va 6 ni ko'paytirish.
\frac{8}{16}
8 olish uchun -4 va 12'ni qo'shing.
\frac{1}{2}
\frac{8}{16} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.