Baholash
\sqrt{2}+3\approx 4,414213562
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(\sqrt{6}+3\sqrt{3}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
\frac{\sqrt{6}+3\sqrt{3}}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(\sqrt{6}+3\sqrt{3}\right)\sqrt{3}}{3}
\sqrt{3} kvadrati – 3.
\frac{\sqrt{6}\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{3}
\sqrt{6}+3\sqrt{3} ga \sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\sqrt{3}\sqrt{2}\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{3}
Faktor: 6=3\times 2. \sqrt{3\times 2} koʻpaytmasining kvadrat ildizini \sqrt{3}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
\frac{3\sqrt{2}+3\left(\sqrt{3}\right)^{2}}{3}
3 hosil qilish uchun \sqrt{3} va \sqrt{3} ni ko'paytirish.
\frac{3\sqrt{2}+3\times 3}{3}
\sqrt{3} kvadrati – 3.
\frac{3\sqrt{2}+9}{3}
9 hosil qilish uchun 3 va 3 ni ko'paytirish.
\sqrt{2}+3
\sqrt{2}+3 natijani olish uchun 3\sqrt{2}+9 ning har bir ifodasini 3 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}