Baholash
\sqrt{3}-2\approx -0,267949192
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{\left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}
\frac{\sqrt{3}-3}{\sqrt{3}+3} maxrajini \sqrt{3}-3 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{\left(\sqrt{3}\right)^{2}-3^{2}}
Hisoblang: \left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{3-9}
\sqrt{3} kvadratini chiqarish. 3 kvadratini chiqarish.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{-6}
-6 olish uchun 3 dan 9 ni ayirish.
\frac{\left(\sqrt{3}-3\right)^{2}}{-6}
\left(\sqrt{3}-3\right)^{2} hosil qilish uchun \sqrt{3}-3 va \sqrt{3}-3 ni ko'paytirish.
\frac{\left(\sqrt{3}\right)^{2}-6\sqrt{3}+9}{-6}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{3}-3\right)^{2} kengaytirilishi uchun ishlating.
\frac{3-6\sqrt{3}+9}{-6}
\sqrt{3} kvadrati – 3.
\frac{12-6\sqrt{3}}{-6}
12 olish uchun 3 va 9'ni qo'shing.
-2+\sqrt{3}
-2+\sqrt{3} natijani olish uchun 12-6\sqrt{3} ning har bir ifodasini -6 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}