Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{\left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}
\frac{\sqrt{3}-3}{\sqrt{3}+3} maxrajini \sqrt{3}-3 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{\left(\sqrt{3}\right)^{2}-3^{2}}
Hisoblang: \left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{3-9}
\sqrt{3} kvadratini chiqarish. 3 kvadratini chiqarish.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{-6}
-6 olish uchun 3 dan 9 ni ayirish.
\frac{\left(\sqrt{3}-3\right)^{2}}{-6}
\left(\sqrt{3}-3\right)^{2} hosil qilish uchun \sqrt{3}-3 va \sqrt{3}-3 ni ko'paytirish.
\frac{\left(\sqrt{3}\right)^{2}-6\sqrt{3}+9}{-6}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{3}-3\right)^{2} kengaytirilishi uchun ishlating.
\frac{3-6\sqrt{3}+9}{-6}
\sqrt{3} kvadrati – 3.
\frac{12-6\sqrt{3}}{-6}
12 olish uchun 3 va 9'ni qo'shing.
-2+\sqrt{3}
-2+\sqrt{3} natijani olish uchun 12-6\sqrt{3} ning har bir ifodasini -6 ga bo‘ling.