Baholash (complex solution)
\frac{\sqrt{6}}{3}\approx 0,816496581
Ashyoviy qism (complex solution)
\frac{\sqrt{6}}{3} = 0,8164965809277259
Baholash
\text{Indeterminate}
Baham ko'rish
Klipbordga nusxa olish
\frac{3i\sqrt{2}}{\sqrt{-27}}
Faktor: -18=\left(3i\right)^{2}\times 2. \sqrt{\left(3i\right)^{2}\times 2} koʻpaytmasining kvadrat ildizini \sqrt{\left(3i\right)^{2}}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. \left(3i\right)^{2} ning kvadrat ildizini chiqarish.
\frac{3i\sqrt{2}}{3i\sqrt{3}}
Faktor: -27=\left(3i\right)^{2}\times 3. \sqrt{\left(3i\right)^{2}\times 3} koʻpaytmasining kvadrat ildizini \sqrt{\left(3i\right)^{2}}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. \left(3i\right)^{2} ning kvadrat ildizini chiqarish.
\frac{\sqrt{2}}{\sqrt{3}\times \left(3i\right)^{0}}
Ayni asosning daraja ko‘rsatkichini bo‘lish uchun suratning darajasini maxraj darajasiga bo‘ling.
\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}\times \left(3i\right)^{0}}
\frac{\sqrt{2}}{\sqrt{3}\times \left(3i\right)^{0}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\sqrt{2}\sqrt{3}}{3\times \left(3i\right)^{0}}
\sqrt{3} kvadrati – 3.
\frac{\sqrt{6}}{3\times \left(3i\right)^{0}}
\sqrt{2} va \sqrt{3} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{\sqrt{6}}{3\times 1}
0 daraja ko‘rsatkichini 3i ga hisoblang va 1 ni qiymatni oling.
\frac{\sqrt{6}}{3}
3 hosil qilish uchun 3 va 1 ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}