Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365i^{2}}{130+5915i+30+1365i}
Binomlarni ko‘paytirgandek 130+5915i va 30+1365i murakkab sonlarni ko‘paytiring.
\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right)}{130+5915i+30+1365i}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{3900+177450i+177450i-8073975}{130+5915i+30+1365i}
130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{3900-8073975+\left(177450+177450\right)i}{130+5915i+30+1365i}
3900+177450i+177450i-8073975 ichida real va mavhum qismlarni birlashtiring.
\frac{-8070075+354900i}{130+5915i+30+1365i}
3900-8073975+\left(177450+177450\right)i ichida qo‘shishlarni bajaring.
\frac{-8070075+354900i}{130+30+\left(5915+1365\right)i}
130+5915i+30+1365i ichida real va mavhum qismlarni birlashtiring.
\frac{-8070075+354900i}{160+7280i}
130+30+\left(5915+1365\right)i ichida qo‘shishlarni bajaring.
\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{\left(160+7280i\right)\left(160-7280i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 160-7280i.
\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{160^{2}-7280^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{53024000}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)i^{2}}{53024000}
Binomlarni ko‘paytirgandek -8070075+354900i va 160-7280i murakkab sonlarni ko‘paytiring.
\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right)}{53024000}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{-1291212000+58750146000i+56784000i+2583672000}{53024000}
-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{-1291212000+2583672000+\left(58750146000+56784000\right)i}{53024000}
-1291212000+58750146000i+56784000i+2583672000 ichida real va mavhum qismlarni birlashtiring.
\frac{1292460000+58806930000i}{53024000}
-1291212000+2583672000+\left(58750146000+56784000\right)i ichida qo‘shishlarni bajaring.
\frac{195}{8}+\frac{17745}{16}i
\frac{195}{8}+\frac{17745}{16}i ni olish uchun 1292460000+58806930000i ni 53024000 ga bo‘ling.
Re(\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365i^{2}}{130+5915i+30+1365i})
Binomlarni ko‘paytirgandek 130+5915i va 30+1365i murakkab sonlarni ko‘paytiring.
Re(\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right)}{130+5915i+30+1365i})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{3900+177450i+177450i-8073975}{130+5915i+30+1365i})
130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{3900-8073975+\left(177450+177450\right)i}{130+5915i+30+1365i})
3900+177450i+177450i-8073975 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{-8070075+354900i}{130+5915i+30+1365i})
3900-8073975+\left(177450+177450\right)i ichida qo‘shishlarni bajaring.
Re(\frac{-8070075+354900i}{130+30+\left(5915+1365\right)i})
130+5915i+30+1365i ichida real va mavhum qismlarni birlashtiring.
Re(\frac{-8070075+354900i}{160+7280i})
130+30+\left(5915+1365\right)i ichida qo‘shishlarni bajaring.
Re(\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{\left(160+7280i\right)\left(160-7280i\right)})
\frac{-8070075+354900i}{160+7280i}ning surat va maxrajini murakkab tutash maxraj 160-7280i bilan ko‘paytiring.
Re(\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{160^{2}-7280^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{53024000})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)i^{2}}{53024000})
Binomlarni ko‘paytirgandek -8070075+354900i va 160-7280i murakkab sonlarni ko‘paytiring.
Re(\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right)}{53024000})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{-1291212000+58750146000i+56784000i+2583672000}{53024000})
-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{-1291212000+2583672000+\left(58750146000+56784000\right)i}{53024000})
-1291212000+58750146000i+56784000i+2583672000 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{1292460000+58806930000i}{53024000})
-1291212000+2583672000+\left(58750146000+56784000\right)i ichida qo‘shishlarni bajaring.
Re(\frac{195}{8}+\frac{17745}{16}i)
\frac{195}{8}+\frac{17745}{16}i ni olish uchun 1292460000+58806930000i ni 53024000 ga bo‘ling.
\frac{195}{8}
\frac{195}{8}+\frac{17745}{16}i ning real qismi – \frac{195}{8}.