Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(0\times 5268-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
\left(0-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 5268 ni ko'paytirish.
-x\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-x\left(0\times 268-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
-x\left(0-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 268 ni ko'paytirish.
-x\left(-1\right)x=72\times 10^{-4}x
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
xx=72\times 10^{-4}x
1 hosil qilish uchun -1 va -1 ni ko'paytirish.
x^{2}=72\times 10^{-4}x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}=72\times \frac{1}{10000}x
-4 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{10000} ni qiymatni oling.
x^{2}=\frac{9}{1250}x
\frac{9}{1250} hosil qilish uchun 72 va \frac{1}{10000} ni ko'paytirish.
x^{2}-\frac{9}{1250}x=0
Ikkala tarafdan \frac{9}{1250}x ni ayirish.
x\left(x-\frac{9}{1250}\right)=0
x omili.
x=0 x=\frac{9}{1250}
Tenglamani yechish uchun x=0 va x-\frac{9}{1250}=0 ni yeching.
x=\frac{9}{1250}
x qiymati 0 teng bo‘lmaydi.
\left(0\times 5268-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
\left(0-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 5268 ni ko'paytirish.
-x\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-x\left(0\times 268-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
-x\left(0-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 268 ni ko'paytirish.
-x\left(-1\right)x=72\times 10^{-4}x
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
xx=72\times 10^{-4}x
1 hosil qilish uchun -1 va -1 ni ko'paytirish.
x^{2}=72\times 10^{-4}x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}=72\times \frac{1}{10000}x
-4 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{10000} ni qiymatni oling.
x^{2}=\frac{9}{1250}x
\frac{9}{1250} hosil qilish uchun 72 va \frac{1}{10000} ni ko'paytirish.
x^{2}-\frac{9}{1250}x=0
Ikkala tarafdan \frac{9}{1250}x ni ayirish.
x=\frac{-\left(-\frac{9}{1250}\right)±\sqrt{\left(-\frac{9}{1250}\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -\frac{9}{1250} ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-\frac{9}{1250}\right)±\frac{9}{1250}}{2}
\left(-\frac{9}{1250}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{\frac{9}{1250}±\frac{9}{1250}}{2}
-\frac{9}{1250} ning teskarisi \frac{9}{1250} ga teng.
x=\frac{\frac{9}{625}}{2}
x=\frac{\frac{9}{1250}±\frac{9}{1250}}{2} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{1250} ni \frac{9}{1250} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{9}{1250}
\frac{9}{625} ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{\frac{9}{1250}±\frac{9}{1250}}{2} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{9}{1250} ni \frac{9}{1250} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=0
0 ni 2 ga bo'lish.
x=\frac{9}{1250} x=0
Tenglama yechildi.
x=\frac{9}{1250}
x qiymati 0 teng bo‘lmaydi.
\left(0\times 5268-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
\left(0-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 5268 ni ko'paytirish.
-x\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-x\left(0\times 268-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
-x\left(0-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 268 ni ko'paytirish.
-x\left(-1\right)x=72\times 10^{-4}x
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
xx=72\times 10^{-4}x
1 hosil qilish uchun -1 va -1 ni ko'paytirish.
x^{2}=72\times 10^{-4}x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}=72\times \frac{1}{10000}x
-4 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{10000} ni qiymatni oling.
x^{2}=\frac{9}{1250}x
\frac{9}{1250} hosil qilish uchun 72 va \frac{1}{10000} ni ko'paytirish.
x^{2}-\frac{9}{1250}x=0
Ikkala tarafdan \frac{9}{1250}x ni ayirish.
x^{2}-\frac{9}{1250}x+\left(-\frac{9}{2500}\right)^{2}=\left(-\frac{9}{2500}\right)^{2}
-\frac{9}{1250} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{2500} olish uchun. Keyin, -\frac{9}{2500} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{9}{1250}x+\frac{81}{6250000}=\frac{81}{6250000}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2500} kvadratini chiqarish.
\left(x-\frac{9}{2500}\right)^{2}=\frac{81}{6250000}
x^{2}-\frac{9}{1250}x+\frac{81}{6250000} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{2500}\right)^{2}}=\sqrt{\frac{81}{6250000}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{2500}=\frac{9}{2500} x-\frac{9}{2500}=-\frac{9}{2500}
Qisqartirish.
x=\frac{9}{1250} x=0
\frac{9}{2500} ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{9}{1250}
x qiymati 0 teng bo‘lmaydi.