x uchun yechish
x=\frac{9}{1250}=0,0072
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(0\times 5268-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
\left(0-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 5268 ni ko'paytirish.
-x\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-x\left(0\times 268-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
-x\left(0-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 268 ni ko'paytirish.
-x\left(-1\right)x=72\times 10^{-4}x
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
xx=72\times 10^{-4}x
1 hosil qilish uchun -1 va -1 ni ko'paytirish.
x^{2}=72\times 10^{-4}x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}=72\times \frac{1}{10000}x
-4 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{10000} ni qiymatni oling.
x^{2}=\frac{9}{1250}x
\frac{9}{1250} hosil qilish uchun 72 va \frac{1}{10000} ni ko'paytirish.
x^{2}-\frac{9}{1250}x=0
Ikkala tarafdan \frac{9}{1250}x ni ayirish.
x\left(x-\frac{9}{1250}\right)=0
x omili.
x=0 x=\frac{9}{1250}
Tenglamani yechish uchun x=0 va x-\frac{9}{1250}=0 ni yeching.
x=\frac{9}{1250}
x qiymati 0 teng bo‘lmaydi.
\left(0\times 5268-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
\left(0-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 5268 ni ko'paytirish.
-x\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-x\left(0\times 268-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
-x\left(0-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 268 ni ko'paytirish.
-x\left(-1\right)x=72\times 10^{-4}x
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
xx=72\times 10^{-4}x
1 hosil qilish uchun -1 va -1 ni ko'paytirish.
x^{2}=72\times 10^{-4}x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}=72\times \frac{1}{10000}x
-4 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{10000} ni qiymatni oling.
x^{2}=\frac{9}{1250}x
\frac{9}{1250} hosil qilish uchun 72 va \frac{1}{10000} ni ko'paytirish.
x^{2}-\frac{9}{1250}x=0
Ikkala tarafdan \frac{9}{1250}x ni ayirish.
x=\frac{-\left(-\frac{9}{1250}\right)±\sqrt{\left(-\frac{9}{1250}\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -\frac{9}{1250} ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-\frac{9}{1250}\right)±\frac{9}{1250}}{2}
\left(-\frac{9}{1250}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{\frac{9}{1250}±\frac{9}{1250}}{2}
-\frac{9}{1250} ning teskarisi \frac{9}{1250} ga teng.
x=\frac{\frac{9}{625}}{2}
x=\frac{\frac{9}{1250}±\frac{9}{1250}}{2} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{1250} ni \frac{9}{1250} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{9}{1250}
\frac{9}{625} ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{\frac{9}{1250}±\frac{9}{1250}}{2} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{9}{1250} ni \frac{9}{1250} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=0
0 ni 2 ga bo'lish.
x=\frac{9}{1250} x=0
Tenglama yechildi.
x=\frac{9}{1250}
x qiymati 0 teng bo‘lmaydi.
\left(0\times 5268-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
\left(0-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 5268 ni ko'paytirish.
-x\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-x\left(0\times 268-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
-x\left(0-x\right)=72\times 10^{-4}x
0 hosil qilish uchun 0 va 268 ni ko'paytirish.
-x\left(-1\right)x=72\times 10^{-4}x
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
xx=72\times 10^{-4}x
1 hosil qilish uchun -1 va -1 ni ko'paytirish.
x^{2}=72\times 10^{-4}x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}=72\times \frac{1}{10000}x
-4 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{10000} ni qiymatni oling.
x^{2}=\frac{9}{1250}x
\frac{9}{1250} hosil qilish uchun 72 va \frac{1}{10000} ni ko'paytirish.
x^{2}-\frac{9}{1250}x=0
Ikkala tarafdan \frac{9}{1250}x ni ayirish.
x^{2}-\frac{9}{1250}x+\left(-\frac{9}{2500}\right)^{2}=\left(-\frac{9}{2500}\right)^{2}
-\frac{9}{1250} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{2500} olish uchun. Keyin, -\frac{9}{2500} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{9}{1250}x+\frac{81}{6250000}=\frac{81}{6250000}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2500} kvadratini chiqarish.
\left(x-\frac{9}{2500}\right)^{2}=\frac{81}{6250000}
x^{2}-\frac{9}{1250}x+\frac{81}{6250000} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{2500}\right)^{2}}=\sqrt{\frac{81}{6250000}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{2500}=\frac{9}{2500} x-\frac{9}{2500}=-\frac{9}{2500}
Qisqartirish.
x=\frac{9}{1250} x=0
\frac{9}{2500} ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{9}{1250}
x qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}