Baholash
\frac{c-d^{2}}{d\left(6c+1\right)}
Kengaytirish
\frac{c-d^{2}}{d\left(6c+1\right)}
Baham ko'rish
Klipbordga nusxa olish
\frac{\frac{c}{cd}-\frac{dd}{cd}}{\frac{1}{c}+6}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. d va c ning eng kichik umumiy karralisi cd. \frac{1}{d} ni \frac{c}{c} marotabaga ko'paytirish. \frac{d}{c} ni \frac{d}{d} marotabaga ko'paytirish.
\frac{\frac{c-dd}{cd}}{\frac{1}{c}+6}
\frac{c}{cd} va \frac{dd}{cd} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{c-d^{2}}{cd}}{\frac{1}{c}+6}
c-dd ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{c-d^{2}}{cd}}{\frac{1}{c}+\frac{6c}{c}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 6 ni \frac{c}{c} marotabaga ko'paytirish.
\frac{\frac{c-d^{2}}{cd}}{\frac{1+6c}{c}}
\frac{1}{c} va \frac{6c}{c} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\left(c-d^{2}\right)c}{cd\left(1+6c\right)}
\frac{c-d^{2}}{cd} ni \frac{1+6c}{c} ga bo'lish \frac{c-d^{2}}{cd} ga k'paytirish \frac{1+6c}{c} ga qaytarish.
\frac{c-d^{2}}{d\left(6c+1\right)}
Surat va maxrajdagi ikkala c ni qisqartiring.
\frac{c-d^{2}}{6dc+d}
d ga 6c+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\frac{c}{cd}-\frac{dd}{cd}}{\frac{1}{c}+6}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. d va c ning eng kichik umumiy karralisi cd. \frac{1}{d} ni \frac{c}{c} marotabaga ko'paytirish. \frac{d}{c} ni \frac{d}{d} marotabaga ko'paytirish.
\frac{\frac{c-dd}{cd}}{\frac{1}{c}+6}
\frac{c}{cd} va \frac{dd}{cd} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{c-d^{2}}{cd}}{\frac{1}{c}+6}
c-dd ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{c-d^{2}}{cd}}{\frac{1}{c}+\frac{6c}{c}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 6 ni \frac{c}{c} marotabaga ko'paytirish.
\frac{\frac{c-d^{2}}{cd}}{\frac{1+6c}{c}}
\frac{1}{c} va \frac{6c}{c} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\left(c-d^{2}\right)c}{cd\left(1+6c\right)}
\frac{c-d^{2}}{cd} ni \frac{1+6c}{c} ga bo'lish \frac{c-d^{2}}{cd} ga k'paytirish \frac{1+6c}{c} ga qaytarish.
\frac{c-d^{2}}{d\left(6c+1\right)}
Surat va maxrajdagi ikkala c ni qisqartiring.
\frac{c-d^{2}}{6dc+d}
d ga 6c+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}