Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-1}{\frac{1}{\sqrt{2}}+\sqrt{3}}
\frac{1}{\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\frac{\sqrt{2}}{2}-1}{\frac{1}{\sqrt{2}}+\sqrt{3}}
\sqrt{2} kvadrati – 2.
\frac{\frac{\sqrt{2}}{2}-\frac{2}{2}}{\frac{1}{\sqrt{2}}+\sqrt{3}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{2}{2} marotabaga ko'paytirish.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{1}{\sqrt{2}}+\sqrt{3}}
\frac{\sqrt{2}}{2} va \frac{2}{2} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{3}}
\frac{1}{\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}}{2}+\sqrt{3}}
\sqrt{2} kvadrati – 2.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}}{2}+\frac{2\sqrt{3}}{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \sqrt{3} ni \frac{2}{2} marotabaga ko'paytirish.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}+2\sqrt{3}}{2}}
\frac{\sqrt{2}}{2} va \frac{2\sqrt{3}}{2} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\left(\sqrt{2}-2\right)\times 2}{2\left(\sqrt{2}+2\sqrt{3}\right)}
\frac{\sqrt{2}-2}{2} ni \frac{\sqrt{2}+2\sqrt{3}}{2} ga bo'lish \frac{\sqrt{2}-2}{2} ga k'paytirish \frac{\sqrt{2}+2\sqrt{3}}{2} ga qaytarish.
\frac{\sqrt{2}-2}{\sqrt{2}+2\sqrt{3}}
Surat va maxrajdagi ikkala 2 ni qisqartiring.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{\left(\sqrt{2}+2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right)}
\frac{\sqrt{2}-2}{\sqrt{2}+2\sqrt{3}} maxrajini \sqrt{2}-2\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}
Hisoblang: \left(\sqrt{2}+2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-\left(2\sqrt{3}\right)^{2}}
\sqrt{2} kvadrati – 2.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-2^{2}\left(\sqrt{3}\right)^{2}}
\left(2\sqrt{3}\right)^{2} ni kengaytirish.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-4\left(\sqrt{3}\right)^{2}}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-4\times 3}
\sqrt{3} kvadrati – 3.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-12}
12 hosil qilish uchun 4 va 3 ni ko'paytirish.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{-10}
-10 olish uchun 2 dan 12 ni ayirish.
\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{3}-2\sqrt{2}+4\sqrt{3}}{-10}
\sqrt{2}-2 ifodaning har bir elementini \sqrt{2}-2\sqrt{3} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{2-2\sqrt{2}\sqrt{3}-2\sqrt{2}+4\sqrt{3}}{-10}
\sqrt{2} kvadrati – 2.
\frac{2-2\sqrt{6}-2\sqrt{2}+4\sqrt{3}}{-10}
\sqrt{2} va \sqrt{3} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.