Baholash
x^{3}
Kengaytirish
x^{3}
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(x^{-2}+y^{-2}\right)x^{-1}}{x^{-2}\left(x^{-2}y^{-2}+x^{-4}\right)}
\frac{x^{-2}+y^{-2}}{x^{-2}} ni \frac{x^{-2}y^{-2}+x^{-4}}{x^{-1}} ga bo'lish \frac{x^{-2}+y^{-2}}{x^{-2}} ga k'paytirish \frac{x^{-2}y^{-2}+x^{-4}}{x^{-1}} ga qaytarish.
\frac{\left(x^{-2}+y^{-2}\right)x^{1}}{x^{-2}y^{-2}+x^{-4}}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\left(x^{-2}+y^{-2}\right)x}{x^{-2}y^{-2}+x^{-4}}
1 daraja ko‘rsatkichini x ga hisoblang va x ni qiymatni oling.
\frac{\left(y^{-2}x^{2}+1\right)x^{-2}x}{\left(x^{-2}y^{2}+1\right)x^{-2}y^{-2}}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{\left(y^{-2}x^{2}+1\right)x}{\left(x^{-2}y^{2}+1\right)y^{-2}}
Surat va maxrajdagi ikkala x^{-2} ni qisqartiring.
\frac{x+y^{-2}x^{3}}{x^{-2}+y^{-2}}
Ifodani kengaytiring.
\frac{y^{-2}x\left(x^{2}+y^{2}\right)}{\left(y^{-2}x^{2}+1\right)x^{-2}}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{y^{-2}\left(x^{2}+y^{2}\right)x^{3}}{y^{-2}x^{2}+1}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{x^{3}+y^{-2}x^{5}}{1+\left(\frac{1}{y}x\right)^{2}}
Ifodani kengaytiring.
\frac{x^{3}+y^{-2}x^{5}}{1+\left(\frac{x}{y}\right)^{2}}
\frac{1}{y}x ni yagona kasrga aylantiring.
\frac{x^{3}+y^{-2}x^{5}}{1+\frac{x^{2}}{y^{2}}}
\frac{x}{y}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{x^{3}+y^{-2}x^{5}}{\frac{y^{2}}{y^{2}}+\frac{x^{2}}{y^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{y^{2}}{y^{2}} marotabaga ko'paytirish.
\frac{x^{3}+y^{-2}x^{5}}{\frac{y^{2}+x^{2}}{y^{2}}}
\frac{y^{2}}{y^{2}} va \frac{x^{2}}{y^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\left(x^{3}+y^{-2}x^{5}\right)y^{2}}{y^{2}+x^{2}}
x^{3}+y^{-2}x^{5} ni \frac{y^{2}+x^{2}}{y^{2}} ga bo'lish x^{3}+y^{-2}x^{5} ga k'paytirish \frac{y^{2}+x^{2}}{y^{2}} ga qaytarish.
\frac{y^{-2}y^{2}\left(x^{2}+y^{2}\right)x^{3}}{x^{2}+y^{2}}
Hali faktorlanmagan ifodalarni faktorlang.
y^{-2}y^{2}x^{3}
Surat va maxrajdagi ikkala x^{2}+y^{2} ni qisqartiring.
x^{3}
Ifodani kengaytiring.
\frac{\left(x^{-2}+y^{-2}\right)x^{-1}}{x^{-2}\left(x^{-2}y^{-2}+x^{-4}\right)}
\frac{x^{-2}+y^{-2}}{x^{-2}} ni \frac{x^{-2}y^{-2}+x^{-4}}{x^{-1}} ga bo'lish \frac{x^{-2}+y^{-2}}{x^{-2}} ga k'paytirish \frac{x^{-2}y^{-2}+x^{-4}}{x^{-1}} ga qaytarish.
\frac{\left(x^{-2}+y^{-2}\right)x^{1}}{x^{-2}y^{-2}+x^{-4}}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\left(x^{-2}+y^{-2}\right)x}{x^{-2}y^{-2}+x^{-4}}
1 daraja ko‘rsatkichini x ga hisoblang va x ni qiymatni oling.
\frac{\left(y^{-2}x^{2}+1\right)x^{-2}x}{\left(x^{-2}y^{2}+1\right)x^{-2}y^{-2}}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{\left(y^{-2}x^{2}+1\right)x}{\left(x^{-2}y^{2}+1\right)y^{-2}}
Surat va maxrajdagi ikkala x^{-2} ni qisqartiring.
\frac{x+y^{-2}x^{3}}{x^{-2}+y^{-2}}
Ifodani kengaytiring.
\frac{y^{-2}x\left(x^{2}+y^{2}\right)}{\left(y^{-2}x^{2}+1\right)x^{-2}}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{y^{-2}\left(x^{2}+y^{2}\right)x^{3}}{y^{-2}x^{2}+1}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{x^{3}+y^{-2}x^{5}}{1+\left(\frac{1}{y}x\right)^{2}}
Ifodani kengaytiring.
\frac{x^{3}+y^{-2}x^{5}}{1+\left(\frac{x}{y}\right)^{2}}
\frac{1}{y}x ni yagona kasrga aylantiring.
\frac{x^{3}+y^{-2}x^{5}}{1+\frac{x^{2}}{y^{2}}}
\frac{x}{y}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{x^{3}+y^{-2}x^{5}}{\frac{y^{2}}{y^{2}}+\frac{x^{2}}{y^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{y^{2}}{y^{2}} marotabaga ko'paytirish.
\frac{x^{3}+y^{-2}x^{5}}{\frac{y^{2}+x^{2}}{y^{2}}}
\frac{y^{2}}{y^{2}} va \frac{x^{2}}{y^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\left(x^{3}+y^{-2}x^{5}\right)y^{2}}{y^{2}+x^{2}}
x^{3}+y^{-2}x^{5} ni \frac{y^{2}+x^{2}}{y^{2}} ga bo'lish x^{3}+y^{-2}x^{5} ga k'paytirish \frac{y^{2}+x^{2}}{y^{2}} ga qaytarish.
\frac{y^{-2}y^{2}\left(x^{2}+y^{2}\right)x^{3}}{x^{2}+y^{2}}
Hali faktorlanmagan ifodalarni faktorlang.
y^{-2}y^{2}x^{3}
Surat va maxrajdagi ikkala x^{2}+y^{2} ni qisqartiring.
x^{3}
Ifodani kengaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}