Baholash
\frac{1961}{7848}\approx 0,249872579
Omil
\frac{37 \cdot 53}{2 ^ {3} \cdot 3 ^ {2} \cdot 109} = 0,24987257900101936
Viktorina
Arithmetic
5xshash muammolar:
\frac{ \frac{ \frac{ 1962 }{ 2 } - \frac{ 1 }{ 2 } }{ 981 } }{ 4 }
Baham ko'rish
Klipbordga nusxa olish
\frac{\frac{1962}{2}-\frac{1}{2}}{981\times 4}
\frac{\frac{\frac{1962}{2}-\frac{1}{2}}{981}}{4} ni yagona kasrga aylantiring.
\frac{\frac{1962-1}{2}}{981\times 4}
\frac{1962}{2} va \frac{1}{2} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{1961}{2}}{981\times 4}
1961 olish uchun 1962 dan 1 ni ayirish.
\frac{\frac{1961}{2}}{3924}
3924 hosil qilish uchun 981 va 4 ni ko'paytirish.
\frac{1961}{2\times 3924}
\frac{\frac{1961}{2}}{3924} ni yagona kasrga aylantiring.
\frac{1961}{7848}
7848 hosil qilish uchun 2 va 3924 ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}