\frac{ }{ } { n }^{ 2 } = { 11 }^{ 2 } - { 107 }^{ 2 } + { 96 }^{ 2 } + { 59 }^{ 2 }
n uchun yechish
n=-37
n=37
Baham ko'rish
Klipbordga nusxa olish
1n^{2}=11^{2}-107^{2}+96^{2}+59^{2}
Har qanday son birga bo‘linganda, natija o‘zi chiqadi.
1n^{2}=121-107^{2}+96^{2}+59^{2}
2 daraja ko‘rsatkichini 11 ga hisoblang va 121 ni qiymatni oling.
1n^{2}=121-11449+96^{2}+59^{2}
2 daraja ko‘rsatkichini 107 ga hisoblang va 11449 ni qiymatni oling.
1n^{2}=-11328+96^{2}+59^{2}
-11328 olish uchun 121 dan 11449 ni ayirish.
1n^{2}=-11328+9216+59^{2}
2 daraja ko‘rsatkichini 96 ga hisoblang va 9216 ni qiymatni oling.
1n^{2}=-2112+59^{2}
-2112 olish uchun -11328 va 9216'ni qo'shing.
1n^{2}=-2112+3481
2 daraja ko‘rsatkichini 59 ga hisoblang va 3481 ni qiymatni oling.
1n^{2}=1369
1369 olish uchun -2112 va 3481'ni qo'shing.
1n^{2}-1369=0
Ikkala tarafdan 1369 ni ayirish.
n^{2}-1369=0
Shartlarni qayta saralash.
\left(n-37\right)\left(n+37\right)=0
Hisoblang: n^{2}-1369. n^{2}-1369 ni n^{2}-37^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
n=37 n=-37
Tenglamani yechish uchun n-37=0 va n+37=0 ni yeching.
1n^{2}=11^{2}-107^{2}+96^{2}+59^{2}
Har qanday son birga bo‘linganda, natija o‘zi chiqadi.
1n^{2}=121-107^{2}+96^{2}+59^{2}
2 daraja ko‘rsatkichini 11 ga hisoblang va 121 ni qiymatni oling.
1n^{2}=121-11449+96^{2}+59^{2}
2 daraja ko‘rsatkichini 107 ga hisoblang va 11449 ni qiymatni oling.
1n^{2}=-11328+96^{2}+59^{2}
-11328 olish uchun 121 dan 11449 ni ayirish.
1n^{2}=-11328+9216+59^{2}
2 daraja ko‘rsatkichini 96 ga hisoblang va 9216 ni qiymatni oling.
1n^{2}=-2112+59^{2}
-2112 olish uchun -11328 va 9216'ni qo'shing.
1n^{2}=-2112+3481
2 daraja ko‘rsatkichini 59 ga hisoblang va 3481 ni qiymatni oling.
1n^{2}=1369
1369 olish uchun -2112 va 3481'ni qo'shing.
n^{2}=1369
Ikki tarafini 1 ga bo‘ling.
n=37 n=-37
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
1n^{2}=11^{2}-107^{2}+96^{2}+59^{2}
Har qanday son birga bo‘linganda, natija o‘zi chiqadi.
1n^{2}=121-107^{2}+96^{2}+59^{2}
2 daraja ko‘rsatkichini 11 ga hisoblang va 121 ni qiymatni oling.
1n^{2}=121-11449+96^{2}+59^{2}
2 daraja ko‘rsatkichini 107 ga hisoblang va 11449 ni qiymatni oling.
1n^{2}=-11328+96^{2}+59^{2}
-11328 olish uchun 121 dan 11449 ni ayirish.
1n^{2}=-11328+9216+59^{2}
2 daraja ko‘rsatkichini 96 ga hisoblang va 9216 ni qiymatni oling.
1n^{2}=-2112+59^{2}
-2112 olish uchun -11328 va 9216'ni qo'shing.
1n^{2}=-2112+3481
2 daraja ko‘rsatkichini 59 ga hisoblang va 3481 ni qiymatni oling.
1n^{2}=1369
1369 olish uchun -2112 va 3481'ni qo'shing.
1n^{2}-1369=0
Ikkala tarafdan 1369 ni ayirish.
n^{2}-1369=0
Shartlarni qayta saralash.
n=\frac{0±\sqrt{0^{2}-4\left(-1369\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -1369 ni c bilan almashtiring.
n=\frac{0±\sqrt{-4\left(-1369\right)}}{2}
0 kvadratini chiqarish.
n=\frac{0±\sqrt{5476}}{2}
-4 ni -1369 marotabaga ko'paytirish.
n=\frac{0±74}{2}
5476 ning kvadrat ildizini chiqarish.
n=37
n=\frac{0±74}{2} tenglamasini yeching, bunda ± musbat. 74 ni 2 ga bo'lish.
n=-37
n=\frac{0±74}{2} tenglamasini yeching, bunda ± manfiy. -74 ni 2 ga bo'lish.
n=37 n=-37
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}