z uchun yechish
z=6+2i
Baham ko'rish
Klipbordga nusxa olish
z=\left(-1-2i\right)\left(z-8\right)
z qiymati 8 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini z-8 ga ko'paytirish.
z=\left(-1-2i\right)z+\left(8+16i\right)
-1-2i ga z-8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
z-\left(-1-2i\right)z=8+16i
Ikkala tarafdan \left(-1-2i\right)z ni ayirish.
\left(2+2i\right)z=8+16i
\left(2+2i\right)z ni olish uchun z va \left(1+2i\right)z ni birlashtirish.
z=\frac{8+16i}{2+2i}
Ikki tarafini 2+2i ga bo‘ling.
z=\frac{\left(8+16i\right)\left(2-2i\right)}{\left(2+2i\right)\left(2-2i\right)}
\frac{8+16i}{2+2i}ning surat va maxrajini murakkab tutash maxraj 2-2i bilan ko‘paytiring.
z=\frac{48+16i}{8}
\frac{\left(8+16i\right)\left(2-2i\right)}{\left(2+2i\right)\left(2-2i\right)} ichidagi ko‘paytirishlarni bajaring.
z=6+2i
6+2i ni olish uchun 48+16i ni 8 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}