t uchun yechish
t=\frac{7-2z^{2}}{5}
z uchun yechish (complex solution)
z=-\frac{\sqrt{14-10t}}{2}
z=\frac{\sqrt{14-10t}}{2}
z uchun yechish
z=\frac{\sqrt{14-10t}}{2}
z=-\frac{\sqrt{14-10t}}{2}\text{, }t\leq \frac{7}{5}
Baham ko'rish
Klipbordga nusxa olish
2\left(z^{2}+3t\right)=t+7
Tenglamaning ikkala tarafini 4 ga, 2,4 ning eng kichik karralisiga ko‘paytiring.
2z^{2}+6t=t+7
2 ga z^{2}+3t ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2z^{2}+6t-t=7
Ikkala tarafdan t ni ayirish.
2z^{2}+5t=7
5t ni olish uchun 6t va -t ni birlashtirish.
5t=7-2z^{2}
Ikkala tarafdan 2z^{2} ni ayirish.
\frac{5t}{5}=\frac{7-2z^{2}}{5}
Ikki tarafini 5 ga bo‘ling.
t=\frac{7-2z^{2}}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}