x uchun yechish
x=-2-\frac{6}{y}
y\neq 0
y uchun yechish
y=-\frac{6}{x+2}
x\neq -2
Grafik
Baham ko'rish
Klipbordga nusxa olish
2\left(y-xy\right)=3\left(4+2y\right)
Tenglamaning ikkala tarafini 6 ga, 3,-2 ning eng kichik karralisiga ko‘paytiring.
2y-2yx=3\left(4+2y\right)
2 ga y-xy ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2y-2yx=12+6y
3 ga 4+2y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2yx=12+6y-2y
Ikkala tarafdan 2y ni ayirish.
-2yx=12+4y
4y ni olish uchun 6y va -2y ni birlashtirish.
\left(-2y\right)x=4y+12
Tenglama standart shaklda.
\frac{\left(-2y\right)x}{-2y}=\frac{4y+12}{-2y}
Ikki tarafini -2y ga bo‘ling.
x=\frac{4y+12}{-2y}
-2y ga bo'lish -2y ga ko'paytirishni bekor qiladi.
x=-2-\frac{6}{y}
12+4y ni -2y ga bo'lish.
2\left(y-xy\right)=3\left(4+2y\right)
Tenglamaning ikkala tarafini 6 ga, 3,-2 ning eng kichik karralisiga ko‘paytiring.
2y-2yx=3\left(4+2y\right)
2 ga y-xy ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2y-2yx=12+6y
3 ga 4+2y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2y-2yx-6y=12
Ikkala tarafdan 6y ni ayirish.
-4y-2yx=12
-4y ni olish uchun 2y va -6y ni birlashtirish.
\left(-4-2x\right)y=12
y'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(-2x-4\right)y=12
Tenglama standart shaklda.
\frac{\left(-2x-4\right)y}{-2x-4}=\frac{12}{-2x-4}
Ikki tarafini -4-2x ga bo‘ling.
y=\frac{12}{-2x-4}
-4-2x ga bo'lish -4-2x ga ko'paytirishni bekor qiladi.
y=-\frac{6}{x+2}
12 ni -4-2x ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}