y uchun yechish
y = -\frac{17}{7} = -2\frac{3}{7} \approx -2,428571429
Grafik
Baham ko'rish
Klipbordga nusxa olish
2\left(y-1\right)-12=3\left(3y+1\right)
Tenglamaning ikkala tarafini 6 ga, 3,2 ning eng kichik karralisiga ko‘paytiring.
2y-2-12=3\left(3y+1\right)
2 ga y-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2y-14=3\left(3y+1\right)
-14 olish uchun -2 dan 12 ni ayirish.
2y-14=9y+3
3 ga 3y+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2y-14-9y=3
Ikkala tarafdan 9y ni ayirish.
-7y-14=3
-7y ni olish uchun 2y va -9y ni birlashtirish.
-7y=3+14
14 ni ikki tarafga qo’shing.
-7y=17
17 olish uchun 3 va 14'ni qo'shing.
y=\frac{17}{-7}
Ikki tarafini -7 ga bo‘ling.
y=-\frac{17}{7}
\frac{17}{-7} kasri manfiy belgini olib tashlash bilan -\frac{17}{7} sifatida qayta yozilishi mumkin.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}