Asosiy tarkibga oʻtish
Baholash
Tick mark Image
y ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{y^{4}}{y^{1}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
y^{4-1}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
y^{3}
4 dan 1 ni ayirish.
y^{4}\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y})+\frac{1}{y}\frac{\mathrm{d}}{\mathrm{d}y}(y^{4})
Har qanday ikki differensial funksiya uchun, ikki funksiya koʻpaytmasining hosilasi birinchi funksiya marotabasi, ikkinchi plyus hosilasi ikkinchi funksiya marotabasi birinchining hosilasidir.
y^{4}\left(-1\right)y^{-1-1}+\frac{1}{y}\times 4y^{4-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
y^{4}\left(-1\right)y^{-2}+\frac{1}{y}\times 4y^{3}
Qisqartirish.
-y^{4-2}+4y^{-1+3}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
-y^{2}+4y^{2}
Qisqartirish.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{1}y^{4-1})
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\mathrm{d}}{\mathrm{d}y}(y^{3})
Arifmetik hisobni amalga oshirish.
3y^{3-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
3y^{2}
Arifmetik hisobni amalga oshirish.