Baholash
y^{3}
y ga nisbatan hosilani topish
3y^{2}
Grafik
Viktorina
Polynomial
\frac { y ^ { 4 } } { y }
Baham ko'rish
Klipbordga nusxa olish
\frac{y^{4}}{y^{1}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
y^{4-1}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
y^{3}
4 dan 1 ni ayirish.
y^{4}\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y})+\frac{1}{y}\frac{\mathrm{d}}{\mathrm{d}y}(y^{4})
Har qanday ikki differensial funksiya uchun, ikki funksiya koʻpaytmasining hosilasi birinchi funksiya marotabasi, ikkinchi plyus hosilasi ikkinchi funksiya marotabasi birinchining hosilasidir.
y^{4}\left(-1\right)y^{-1-1}+\frac{1}{y}\times 4y^{4-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
y^{4}\left(-1\right)y^{-2}+\frac{1}{y}\times 4y^{3}
Qisqartirish.
-y^{4-2}+4y^{-1+3}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
-y^{2}+4y^{2}
Qisqartirish.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{1}y^{4-1})
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\mathrm{d}}{\mathrm{d}y}(y^{3})
Arifmetik hisobni amalga oshirish.
3y^{3-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
3y^{2}
Arifmetik hisobni amalga oshirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}