Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image
Grafik

Baham ko'rish

\frac{\frac{\left(y-8\right)\left(y+7\right)}{\left(y-8\right)\left(2y+9\right)}\times \frac{2y^{2}+13y+18}{y^{2}+9y+14}}{\frac{2y+y^{2}}{5+y}}
\frac{y^{2}-y-56}{2y^{2}-7y-72} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\frac{y+7}{2y+9}\times \frac{2y^{2}+13y+18}{y^{2}+9y+14}}{\frac{2y+y^{2}}{5+y}}
Surat va maxrajdagi ikkala y-8 ni qisqartiring.
\frac{\frac{y+7}{2y+9}\times \frac{\left(y+2\right)\left(2y+9\right)}{\left(y+2\right)\left(y+7\right)}}{\frac{2y+y^{2}}{5+y}}
\frac{2y^{2}+13y+18}{y^{2}+9y+14} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\frac{y+7}{2y+9}\times \frac{2y+9}{y+7}}{\frac{2y+y^{2}}{5+y}}
Surat va maxrajdagi ikkala y+2 ni qisqartiring.
\frac{\frac{\left(y+7\right)\left(2y+9\right)}{\left(2y+9\right)\left(y+7\right)}}{\frac{2y+y^{2}}{5+y}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{y+7}{2y+9} ni \frac{2y+9}{y+7} ga ko‘paytiring.
\frac{1}{\frac{2y+y^{2}}{5+y}}
Surat va maxrajdagi ikkala \left(y+7\right)\left(2y+9\right) ni qisqartiring.
\frac{5+y}{2y+y^{2}}
1 ni \frac{2y+y^{2}}{5+y} ga bo'lish 1 ga k'paytirish \frac{2y+y^{2}}{5+y} ga qaytarish.
\frac{\frac{\left(y-8\right)\left(y+7\right)}{\left(y-8\right)\left(2y+9\right)}\times \frac{2y^{2}+13y+18}{y^{2}+9y+14}}{\frac{2y+y^{2}}{5+y}}
\frac{y^{2}-y-56}{2y^{2}-7y-72} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\frac{y+7}{2y+9}\times \frac{2y^{2}+13y+18}{y^{2}+9y+14}}{\frac{2y+y^{2}}{5+y}}
Surat va maxrajdagi ikkala y-8 ni qisqartiring.
\frac{\frac{y+7}{2y+9}\times \frac{\left(y+2\right)\left(2y+9\right)}{\left(y+2\right)\left(y+7\right)}}{\frac{2y+y^{2}}{5+y}}
\frac{2y^{2}+13y+18}{y^{2}+9y+14} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\frac{y+7}{2y+9}\times \frac{2y+9}{y+7}}{\frac{2y+y^{2}}{5+y}}
Surat va maxrajdagi ikkala y+2 ni qisqartiring.
\frac{\frac{\left(y+7\right)\left(2y+9\right)}{\left(2y+9\right)\left(y+7\right)}}{\frac{2y+y^{2}}{5+y}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{y+7}{2y+9} ni \frac{2y+9}{y+7} ga ko‘paytiring.
\frac{1}{\frac{2y+y^{2}}{5+y}}
Surat va maxrajdagi ikkala \left(y+7\right)\left(2y+9\right) ni qisqartiring.
\frac{5+y}{2y+y^{2}}
1 ni \frac{2y+y^{2}}{5+y} ga bo'lish 1 ga k'paytirish \frac{2y+y^{2}}{5+y} ga qaytarish.