Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y^{2}-4y+4=12y
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
y^{2}-4y+4-12y=0
Ikkala tarafdan 12y ni ayirish.
y^{2}-16y+4=0
-16y ni olish uchun -4y va -12y ni birlashtirish.
y=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -16 ni b va 4 ni c bilan almashtiring.
y=\frac{-\left(-16\right)±\sqrt{256-4\times 4}}{2}
-16 kvadratini chiqarish.
y=\frac{-\left(-16\right)±\sqrt{256-16}}{2}
-4 ni 4 marotabaga ko'paytirish.
y=\frac{-\left(-16\right)±\sqrt{240}}{2}
256 ni -16 ga qo'shish.
y=\frac{-\left(-16\right)±4\sqrt{15}}{2}
240 ning kvadrat ildizini chiqarish.
y=\frac{16±4\sqrt{15}}{2}
-16 ning teskarisi 16 ga teng.
y=\frac{4\sqrt{15}+16}{2}
y=\frac{16±4\sqrt{15}}{2} tenglamasini yeching, bunda ± musbat. 16 ni 4\sqrt{15} ga qo'shish.
y=2\sqrt{15}+8
16+4\sqrt{15} ni 2 ga bo'lish.
y=\frac{16-4\sqrt{15}}{2}
y=\frac{16±4\sqrt{15}}{2} tenglamasini yeching, bunda ± manfiy. 16 dan 4\sqrt{15} ni ayirish.
y=8-2\sqrt{15}
16-4\sqrt{15} ni 2 ga bo'lish.
y=2\sqrt{15}+8 y=8-2\sqrt{15}
Tenglama yechildi.
y^{2}-4y+4=12y
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
y^{2}-4y+4-12y=0
Ikkala tarafdan 12y ni ayirish.
y^{2}-16y+4=0
-16y ni olish uchun -4y va -12y ni birlashtirish.
y^{2}-16y=-4
Ikkala tarafdan 4 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
y^{2}-16y+\left(-8\right)^{2}=-4+\left(-8\right)^{2}
-16 ni bo‘lish, x shartining koeffitsienti, 2 ga -8 olish uchun. Keyin, -8 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-16y+64=-4+64
-8 kvadratini chiqarish.
y^{2}-16y+64=60
-4 ni 64 ga qo'shish.
\left(y-8\right)^{2}=60
y^{2}-16y+64 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-8\right)^{2}}=\sqrt{60}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-8=2\sqrt{15} y-8=-2\sqrt{15}
Qisqartirish.
y=2\sqrt{15}+8 y=8-2\sqrt{15}
8 ni tenglamaning ikkala tarafiga qo'shish.