Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x+2\right)\left(x-4\right)=1x
x qiymati -3,-2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+2\right)\left(x+3\right) ga, x+3,x^{2}+5x+6 ning eng kichik karralisiga ko‘paytiring.
x^{2}-2x-8=1x
x+2 ga x-4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-2x-8-x=0
Ikkala tarafdan 1x ni ayirish.
x^{2}-3x-8=0
-3x ni olish uchun -2x va -x ni birlashtirish.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-8\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va -8 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-8\right)}}{2}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9+32}}{2}
-4 ni -8 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{41}}{2}
9 ni 32 ga qo'shish.
x=\frac{3±\sqrt{41}}{2}
-3 ning teskarisi 3 ga teng.
x=\frac{\sqrt{41}+3}{2}
x=\frac{3±\sqrt{41}}{2} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{41} ga qo'shish.
x=\frac{3-\sqrt{41}}{2}
x=\frac{3±\sqrt{41}}{2} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{41} ni ayirish.
x=\frac{\sqrt{41}+3}{2} x=\frac{3-\sqrt{41}}{2}
Tenglama yechildi.
\left(x+2\right)\left(x-4\right)=1x
x qiymati -3,-2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+2\right)\left(x+3\right) ga, x+3,x^{2}+5x+6 ning eng kichik karralisiga ko‘paytiring.
x^{2}-2x-8=1x
x+2 ga x-4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-2x-8-x=0
Ikkala tarafdan 1x ni ayirish.
x^{2}-3x-8=0
-3x ni olish uchun -2x va -x ni birlashtirish.
x^{2}-3x=8
8 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=8+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=8+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{41}{4}
8 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=\frac{41}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{\sqrt{41}}{2} x-\frac{3}{2}=-\frac{\sqrt{41}}{2}
Qisqartirish.
x=\frac{\sqrt{41}+3}{2} x=\frac{3-\sqrt{41}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.