x uchun yechish
x = \frac{5}{3} = 1\frac{2}{3} \approx 1,666666667
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+1\right)\left(x-4\right)=\left(x+3\right)\left(x-3\right)
x qiymati -3,-1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+1\right)\left(x+3\right) ga, x+3,x+1 ning eng kichik karralisiga ko‘paytiring.
x^{2}-3x-4=\left(x+3\right)\left(x-3\right)
x+1 ga x-4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-3x-4=x^{2}-9
Hisoblang: \left(x+3\right)\left(x-3\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 3 kvadratini chiqarish.
x^{2}-3x-4-x^{2}=-9
Ikkala tarafdan x^{2} ni ayirish.
-3x-4=-9
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
-3x=-9+4
4 ni ikki tarafga qo’shing.
-3x=-5
-5 olish uchun -9 va 4'ni qo'shing.
x=\frac{-5}{-3}
Ikki tarafini -3 ga bo‘ling.
x=\frac{5}{3}
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-5}{-3} kasrini \frac{5}{3} ga soddalashtirish mumkin.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}