x uchun yechish
x=1
x = \frac{10}{3} = 3\frac{1}{3} \approx 3,333333333
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(2x-4\right)\left(x-2\right)=\left(x-3\right)\left(x-2\right)\times 3-\left(6-2x\right)x
x qiymati -2,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x-3\right)\left(x-2\right)\left(x+2\right) ga, x^{2}-x-6,2x+4,4-x^{2} ning eng kichik karralisiga ko‘paytiring.
2x^{2}-8x+8=\left(x-3\right)\left(x-2\right)\times 3-\left(6-2x\right)x
2x-4 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-8x+8=\left(x^{2}-5x+6\right)\times 3-\left(6-2x\right)x
x-3 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-8x+8=3x^{2}-15x+18-\left(6-2x\right)x
x^{2}-5x+6 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-8x+8=3x^{2}-15x+18-\left(6x-2x^{2}\right)
6-2x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-8x+8=3x^{2}-15x+18-6x+2x^{2}
6x-2x^{2} teskarisini topish uchun har birining teskarisini toping.
2x^{2}-8x+8=3x^{2}-21x+18+2x^{2}
-21x ni olish uchun -15x va -6x ni birlashtirish.
2x^{2}-8x+8=5x^{2}-21x+18
5x^{2} ni olish uchun 3x^{2} va 2x^{2} ni birlashtirish.
2x^{2}-8x+8-5x^{2}=-21x+18
Ikkala tarafdan 5x^{2} ni ayirish.
-3x^{2}-8x+8=-21x+18
-3x^{2} ni olish uchun 2x^{2} va -5x^{2} ni birlashtirish.
-3x^{2}-8x+8+21x=18
21x ni ikki tarafga qo’shing.
-3x^{2}+13x+8=18
13x ni olish uchun -8x va 21x ni birlashtirish.
-3x^{2}+13x+8-18=0
Ikkala tarafdan 18 ni ayirish.
-3x^{2}+13x-10=0
-10 olish uchun 8 dan 18 ni ayirish.
a+b=13 ab=-3\left(-10\right)=30
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -3x^{2}+ax+bx-10 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,30 2,15 3,10 5,6
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b musbat boʻlganda, a va b ikkisi ham musbat. 30-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1+30=31 2+15=17 3+10=13 5+6=11
Har bir juftlik yigʻindisini hisoblang.
a=10 b=3
Yechim – 13 yigʻindisini beruvchi juftlik.
\left(-3x^{2}+10x\right)+\left(3x-10\right)
-3x^{2}+13x-10 ni \left(-3x^{2}+10x\right)+\left(3x-10\right) sifatida qaytadan yozish.
-x\left(3x-10\right)+3x-10
-3x^{2}+10x ichida -x ni ajrating.
\left(3x-10\right)\left(-x+1\right)
Distributiv funktsiyasidan foydalangan holda 3x-10 umumiy terminini chiqaring.
x=\frac{10}{3} x=1
Tenglamani yechish uchun 3x-10=0 va -x+1=0 ni yeching.
\left(2x-4\right)\left(x-2\right)=\left(x-3\right)\left(x-2\right)\times 3-\left(6-2x\right)x
x qiymati -2,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x-3\right)\left(x-2\right)\left(x+2\right) ga, x^{2}-x-6,2x+4,4-x^{2} ning eng kichik karralisiga ko‘paytiring.
2x^{2}-8x+8=\left(x-3\right)\left(x-2\right)\times 3-\left(6-2x\right)x
2x-4 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-8x+8=\left(x^{2}-5x+6\right)\times 3-\left(6-2x\right)x
x-3 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-8x+8=3x^{2}-15x+18-\left(6-2x\right)x
x^{2}-5x+6 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-8x+8=3x^{2}-15x+18-\left(6x-2x^{2}\right)
6-2x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-8x+8=3x^{2}-15x+18-6x+2x^{2}
6x-2x^{2} teskarisini topish uchun har birining teskarisini toping.
2x^{2}-8x+8=3x^{2}-21x+18+2x^{2}
-21x ni olish uchun -15x va -6x ni birlashtirish.
2x^{2}-8x+8=5x^{2}-21x+18
5x^{2} ni olish uchun 3x^{2} va 2x^{2} ni birlashtirish.
2x^{2}-8x+8-5x^{2}=-21x+18
Ikkala tarafdan 5x^{2} ni ayirish.
-3x^{2}-8x+8=-21x+18
-3x^{2} ni olish uchun 2x^{2} va -5x^{2} ni birlashtirish.
-3x^{2}-8x+8+21x=18
21x ni ikki tarafga qo’shing.
-3x^{2}+13x+8=18
13x ni olish uchun -8x va 21x ni birlashtirish.
-3x^{2}+13x+8-18=0
Ikkala tarafdan 18 ni ayirish.
-3x^{2}+13x-10=0
-10 olish uchun 8 dan 18 ni ayirish.
x=\frac{-13±\sqrt{13^{2}-4\left(-3\right)\left(-10\right)}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 13 ni b va -10 ni c bilan almashtiring.
x=\frac{-13±\sqrt{169-4\left(-3\right)\left(-10\right)}}{2\left(-3\right)}
13 kvadratini chiqarish.
x=\frac{-13±\sqrt{169+12\left(-10\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-13±\sqrt{169-120}}{2\left(-3\right)}
12 ni -10 marotabaga ko'paytirish.
x=\frac{-13±\sqrt{49}}{2\left(-3\right)}
169 ni -120 ga qo'shish.
x=\frac{-13±7}{2\left(-3\right)}
49 ning kvadrat ildizini chiqarish.
x=\frac{-13±7}{-6}
2 ni -3 marotabaga ko'paytirish.
x=-\frac{6}{-6}
x=\frac{-13±7}{-6} tenglamasini yeching, bunda ± musbat. -13 ni 7 ga qo'shish.
x=1
-6 ni -6 ga bo'lish.
x=-\frac{20}{-6}
x=\frac{-13±7}{-6} tenglamasini yeching, bunda ± manfiy. -13 dan 7 ni ayirish.
x=\frac{10}{3}
\frac{-20}{-6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=1 x=\frac{10}{3}
Tenglama yechildi.
\left(2x-4\right)\left(x-2\right)=\left(x-3\right)\left(x-2\right)\times 3-\left(6-2x\right)x
x qiymati -2,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x-3\right)\left(x-2\right)\left(x+2\right) ga, x^{2}-x-6,2x+4,4-x^{2} ning eng kichik karralisiga ko‘paytiring.
2x^{2}-8x+8=\left(x-3\right)\left(x-2\right)\times 3-\left(6-2x\right)x
2x-4 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-8x+8=\left(x^{2}-5x+6\right)\times 3-\left(6-2x\right)x
x-3 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-8x+8=3x^{2}-15x+18-\left(6-2x\right)x
x^{2}-5x+6 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-8x+8=3x^{2}-15x+18-\left(6x-2x^{2}\right)
6-2x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-8x+8=3x^{2}-15x+18-6x+2x^{2}
6x-2x^{2} teskarisini topish uchun har birining teskarisini toping.
2x^{2}-8x+8=3x^{2}-21x+18+2x^{2}
-21x ni olish uchun -15x va -6x ni birlashtirish.
2x^{2}-8x+8=5x^{2}-21x+18
5x^{2} ni olish uchun 3x^{2} va 2x^{2} ni birlashtirish.
2x^{2}-8x+8-5x^{2}=-21x+18
Ikkala tarafdan 5x^{2} ni ayirish.
-3x^{2}-8x+8=-21x+18
-3x^{2} ni olish uchun 2x^{2} va -5x^{2} ni birlashtirish.
-3x^{2}-8x+8+21x=18
21x ni ikki tarafga qo’shing.
-3x^{2}+13x+8=18
13x ni olish uchun -8x va 21x ni birlashtirish.
-3x^{2}+13x=18-8
Ikkala tarafdan 8 ni ayirish.
-3x^{2}+13x=10
10 olish uchun 18 dan 8 ni ayirish.
\frac{-3x^{2}+13x}{-3}=\frac{10}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{13}{-3}x=\frac{10}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{13}{3}x=\frac{10}{-3}
13 ni -3 ga bo'lish.
x^{2}-\frac{13}{3}x=-\frac{10}{3}
10 ni -3 ga bo'lish.
x^{2}-\frac{13}{3}x+\left(-\frac{13}{6}\right)^{2}=-\frac{10}{3}+\left(-\frac{13}{6}\right)^{2}
-\frac{13}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{13}{6} olish uchun. Keyin, -\frac{13}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{13}{3}x+\frac{169}{36}=-\frac{10}{3}+\frac{169}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{13}{6} kvadratini chiqarish.
x^{2}-\frac{13}{3}x+\frac{169}{36}=\frac{49}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{10}{3} ni \frac{169}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{13}{6}\right)^{2}=\frac{49}{36}
x^{2}-\frac{13}{3}x+\frac{169}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{13}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{13}{6}=\frac{7}{6} x-\frac{13}{6}=-\frac{7}{6}
Qisqartirish.
x=\frac{10}{3} x=1
\frac{13}{6} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}